شبیه‌سازی مراحل فنولوژیک و طول دوره رشد سورگوم (Sorghum bicolor L.) دانه‌ای با استفاده از مدل SSM-iSorghum (مطالعه موردی: شهرستان گرگان)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه تولیدات گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه گنبد کاووس، ایران.

2 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

3 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران.

چکیده

مدل‌سازی گیاهان زراعی یکی از شاخه‌های علم زراعت و فیزیولوژی گیاهان زراعی است که از حدود 40 سال قبل به‌وجود آمده و با توسعه رایانه‌های پر قدرت و کارآمد در پیشرفت این رشته نقش عمده‌ای داشته است. در مدل SSM شبیه‌ساز ساده‌ای برای تخمین عملکرد و مراحل فنولوژیک محصولات مختلف به‌کار رفته است. هدف از این مطالعه، ارزیابی مدل SSM-iSorghum برای شبیه‌سازی مراحل مختلف فنولوژی و عملکرد سورگوم (Sorghum bicolor L.) دانه‌ای تحت شرایط آب و هوای معتدل مرطوب در شهرستان گرگان است. رشد و نمو سورگوم دانه‌ای با استفاده از مدل SSM-iSorghum بر پایه آمار داده‌های هواشناسی شهرستان گرگان شامل (دمای کمینه، دمای بیشینه، میزان تابش خورشید و میزان بارندگی) روی رقم کیمیا با استفاده از20 سناریو مختلف انجام شد. تراکم کاشت در چهار سطح (17، 21 ، 28 و 35 بوته در مترمربع) و زمان کاشت در پنج تاریخ (10 اردیبهشت، 15 اردیبهشت، 10 خرداد، 15 خرداد و یک تیر) شبیه‌سازی انجام شد. برای پارامترهای ورودی مدل (شامل داده‌های هواشناسی، خصوصیات خاک، مدیریت زراعی) با استفاده از مقادیر به‌دست آمده از آزمایشات مزرعه‌ای در طی دو سال زراعی‌‌ 1389 و 1390 در مزرعه ایستگاه تحقیقات کشاورزی گرگان استفاده شد. نتایج مدل با استفاده از آماره‌های مبتنی بر اختلاف مقادیر شبیه‌سازی و مشاهده شده نشان داد که مدل SSM مراحل فنولوژیک در تاریخ کاشت‌های مختلف و تراکم‌های متفاوت را به‌خوبی پیش‌بینی می‌کند. بالاترین ضریب تبیین (R2) مربوط به روز از کاشت تا رسیدگی فیزیولوژیک و روز از کاشت تا زمان برداشت با مقدار 94/0 و 91/0 درصد به‌دست آمد، بنابراین مدل می‌تواند در برنامه‌ریزهای مدیریتی برای مراحل فنولوژیکی در مزرعه مورد استفاده قرار بگیرد. میزان پراکندگی نقاط شبیه‌سازی شده و مشاهده‌ شده مراحل فنولوژی رشد، شاخص برداشت، عملکرد بیولوژیک و عملکرد دانه در محدوده خط 1:1 قرار گرفتند که نشان می‌دهد، مدل برای شبیه‌سازی مراحل فنولوژی رشد در شرایط اقلیمی شهرستان گرگان از دقت مناسبی برخوردار است. همچنین نتایج ارزیابی مدل در تاریخ‌های مختلف کاشت و تراکم‌های متفاوت نشان داد که دامنه حداقل و حداکثر عملکرد دانه شبیه‌سازی شده به‌ترتیب 20/2 و 60/6 تن و با میانگین 92/3 تن در هکتار و نزدیک دامنه حداقل و حداکثر عملکرد دانه مشاهده شده بین 35/2 و 43/7 تن و با میانگین 24/4 تن در هکتار بود که این تفاوت محدوده عملکرد می‌تواند متأثر از تاریخ‌های کاشت مختلف و تأخیر در زمان کاشت مناسب باشد. جذر میانگین مربعات خطا برابر 70/0 تن در هکتار، مقدار ضریب تبیین (R2) برابر 78/0 درصد و شکل بین مقادیر عملکرد مشاهده شده و عملکرد شبیه‌سازی شده نشان می‌دهد که داده‌ها در محدوده‌ خطای کمتر از 15± درصد خط 1:1 قرار دارند، لذا مدل شبیه‌سازی مناسبی از شرایط گرگان برای عملکرد دانه داشت. بنابراین، می‌توان از مدل SSM-Sorghum در شبیه‌سازی مراحل فنولوژی در تاریخ‌های مختلف کاشت و تراکم‌های متفاوت در شرایط مطلوب آب و هوایی گرگان بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Phonological Development and Growth Duration in Sorghum (Sorghum bicolor L.) using SSM-Sorghum Model (Case Study: Gorgan County)

نویسندگان [English]

  • Ali Rahemi Karizki 1
  • Hamid Kouhkan 1
  • Mohammadtaghi Feyzbakhsh 2
  • Nabi Khalili Aghdam 3
1 Department of Plant Production, Gonbad University, Gonbad, Iran.
2 Department of Agricultural and Horticultural Research, Center for Research and Education of Agriculture and Resources Golestan Province Natural, Agricultural Research, Education and Promotion Organization, Gorgan, Iran
3 Department of Agriculture, Payame Noor University, Tehran, Iran
چکیده [English]

Introduction
 Sorghum (Sorghum bicolor L.) belongs to the cereal family and was domesticated at the same time as other cereals around three thousand years ago. Sorghum is the fifth most important cereal in the world after wheat, rice, corn and barley. Crop modeling is one of the branches of agriculture and crop physiology that has been around for 40 years and the development of powerful and efficient computers has played a major role in the development of this field. SSM model is a simple simulator to estimate the yield of different crops and the effects of climate change. This model requires limited input and easily accessible information. The above model has been evaluated for more than 30 Iranian crop species using various evaluation parameters. Evaluation of SSM_iSorghum model to predict different stages of phenology and yield of grain sorghum under temperate humid climate conditions in Gorgan.
Materials and methods
SSM-Sorghum is a model to simulate sorghum crop phenology, growth and yield formation. The model was derived from SSM-Wheat model described by Soltani and Sinclair (2013). The sorghum model structure is the same as that wheat model except for phenology submodel. Phenology submodel is based on Alagarswamy and Ritchie (1990) with some modifications. The growth and development of sorghum were simulated using the SSM_iSorghum model based on meteorological data of Gorgan city during the years 2010 to 2011, including minimum and maximum temperature, amount of sunlight and rainfall on Kimia cultivar using different scenarios. For model input parameters including meteorological data, soil properties, crop management (using the values obtained from field experiments of 2010-2011 in the research farm of Gorgan Agricultural Research Station) was used. These experiments were performed under favorable agronomic conditions. Experiments at four different densities (17, 21, 28 and 35 plants/m2) and five different planting dates (May 10th and May 15th of 2010, May 10th and May 15th and June 15th 2011) during two growing years in total with 20 different scenarios were performed.
Results and Discussion 
The results showed that model predicted day from planting to emergence, day from planting to ripening, harvest index, biological yield and grain yield with high accuracy (R2=0.91-0.94%). In using the models to predict the performance, it has been reported that the value of the explanation coefficient should be more than 60%, which is a condition in this model. Regarding the 1:1 line between the observed yield and the simulated yield, it was found that values are in the range of 15% up and down the 1: 1 line. So the model has a suitable simulation of Gorgan conditions for grain yield.
 
 
Conclusion
Evaluation of SSM-Sorghum model showed that this model simulates phenological stages, including harvest index, leaf area index, and biological yield with different planting dates and different densities with appropriate accuracy in Gorgan climatic conditions. Most of the points were in the reliable range (± 15%) of the 1:1 line, which indicates an accurate estimate of the model parameters or confirms the simulation efficiency of the model process steps. Therefore, this model can be used in farm management planning including selection of appropriate planting date and appropriate density. Although the model well simulates the phenology , it seems necessary to retest the accuracy of the model with data from various experiments and to use it in the equations if the results of this study are confirmed. Obviously, models are effective when used by analyzing physiological and ecological conditions and based on experiments and experimental measurements of the system.

کلیدواژه‌ها [English]

  • Phenological stages
  • Simulation
  • SSM-iSorghum model
  • Yield grain
Ahmadi Alipour, H., Soltani, A., Kazemi, H., and Nehbandani, A., 2017. Zoning Golestan province in terms of the ability and the wheat production gap using a simulation model (SSM). Journal Agricultural Crop Production 20: 129-144. (In Persian with English Summary). https://doi.org/10.22059/jci.2018.237053.1784.
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbas Pour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Griensven, A., Van Liew, M.W., and Kannan, N., 2012. SWAT: Model use, calibration, and validation. Transaction of the ASAE. American Society of Agricultural and Biological Engineers. 55: 1491–1508. http:// doi.org/10.13031/2013.42256.
Arora, V.K., Singh, H., and Singh, B., 2007. Analyzing wheat productivity responses to climatic irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model. Agricultural Water Management 94: 22-30. https://doi.org/10.1016/j.agwat.2007.07.002.
Azari-Nasrabad, A., and Ramazani, S.H., 2011. Correlation and path analysis in yield and its components in grain   sorghum cultivars. Electronic Journal of Crop Production 4: 51-62. (In Persian with English Summary)
Carberry, P.S., 1991. Test of leaf-area development in CERES-Maize. Field Crops Research 27: 159-167. https://doi.org/10.1016/0378-4290(91)90028-T
Dadrasi, A., and Torabi, B., 2016. Predict the growth and yield of corn in Hamedan. Iranian Journal of Field Crop Sciences 47: 595-610. (In Persian with English Summary).
Dehghan, A., 2007. Effect of sowing date on yield and yield components of three grain sorghum cultivars in Khozestan. Science Journal Agricultural 30: 123-132. (In Persian with English Summary).
Droogers, P., Akbari, M., Torabi, M., and Pazira, E., 2000. Exploring Filed Scale Salinity using Simulaion Modeling, Example for Rudasht Area, Esfahan Provinc, Iran. (In Persian).
FAO, 2020. FAO statistical year book, Food and Agriculture Organization of the United Nations, Rome.
Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., and Bell, M.J., 1995. A peanut simulation model: I. model development and testing. Agronomy Journal 87: 1085–1093. https://doi.org/10.2134/agronj 1995.00021962008700060009x Citations: 50.
Feyzbakhsh, M.T., Kamkar, B., Mokhtarpour, H., and Asadi, M.I., 2014. Assessment and evaluation of CERES-Maize model in Gorgan weather conditions. Journal of Crop Production 8: 25-49. (In Persian with English Summary)
Geoffrey, E.O., Wietse, H.P., Iwan, S., Omondi, P., and Ronald, W.A., 2018. Probabilistic maize yield prediction over East Africa using dynamic ensemble seasonal climate forecasts. Journal of Agricultural and Forest Meteorology 250(2): 243-261. https://doi.org/10.1016/j.agrformet.2017.12.256.
Ghanem, M.E., Marrou, H., Biradar, C., and Sinclair, T.R., 2015. Production potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural System 137: 24–38. https://doi.org/10.1016/j.agsy.2015.03.005
Kassie, B.T., Asseng, S., Porter, C.H., and Royce, F.S., 2016. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy 81: 27-36. https://doi.org/10.1016/j.eja.2016.08.012.
Kobayashi, K., and Salam, M.U., 2000. Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal 92: 345-352. http://doi.org/10.2134/agronj2000.922345x.
KO, J., Piccinni, G., Guo, W., and Steglich, E., 2009. Parameterization of EPIC crop model for simulation of cotton growth in South Texas. Journal Agricultural of Science 147: 169–178. https://doi.org/10.1017/S0021859608008356.
Moeinirad, A., Zeinali, E., Soltani, A., Galeshi, S., and Yeganeh Poor, F., 2017. Investigation of SSM-Wheat model       to forecast of growth and yield of wheat in response to fertilizer nitrogen in order to decrease pollution environmental and diseases. International Journal of Advanced Biological and Biomedical Research 5: 73–78. http://doi.org/10.26655/ijabbr.2017.3.5
Morris, G.P., Ramu, R., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., and Kresovich, S. 2013. Ppulation genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceeding of National Academy of Sci. 110: 2. 453-458. http://doi.org/10.1073/pnas.1215985110.
Messina, C.D., Sinclair, T.R., Hammer, G.L., Curan, D., Thompson, J., Oler, Z., Gho, C., and Cooper, M., 2015. Limited-transpiration trait may increase maize drought tolerance in the US Corn Belt. Agronomy Journal 107: 1978–1986. https://doi.org/10.2134/agronj15.0016.
Nehbandani, A.R., Soltani, A.,  Zeinali, E.,  Raeisi, S., and Rajabi, R., 2016. Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. 2014. Journal of Plant Production 22: 1-26. (In Persian)
Panahi, M.H., A., Soltani, E., Zeinali, M., Kalateh Arabi, and Nehbandani, A.R., 2020. Estimation of phenological parameters in SSM-Wheat model for bread wheat (Triticum aestivum L.) genotypes in Golestan province of Iran. Iranian Journal of Crop Sciences 21(4): 302-314. (In Persian with English Summary). https://doi.org/10.29252/abj.21.4.302
Safari, M., Aghaalikhani, M., and Modares Sanavy, S.A., 2010. Effect of sowing date on phenology and morphological traits of three grain sorghum (Sorghum bicolor L.) cultivars. Iranian Journal of Crop Science 12: 452-466. (In Persian with English Summary). https://doi.org/20.1001.1.15625540.1389.12.4.7.0.
Schoppach, R., Soltani, A., Sinclair, T.R., and Sadok, W., 2017. Yield comparison of simulated rainfed wheat and barley across Middle-East. Agricultural System 153: 101–108. https://doi.org/10.1016/j.agsy.2016.12.017.
Sciarresi, C., Patrignani, A., Soltani, A., Sinclair, T., and Lollato, R.P., 2019. Plant traits to increase winter wheat yield in semiarid and subhumid environments. Agronomy Journal 111: 1–13. https://doi.org/10.2134/agronj2018.12.0766.
Sinclair, T.R., 1986. Water and nitrogen limitations in soybean grain production I. model development. Field crop Research 15: 125–141. https://doi.org/10.1016/0378-4290(86)90082-1.
Sinclair, T.R., and Amir, J., 1992. A model to assess nitrogen limitations on the growth and yield of spring wheat. Field crop Research 30: 63–78. https://doi.org/10.1016/0378-4290(92)90057-G.
Sinclair, T.R., and Muchow, R.C., 1995. Effect of nitrogen supply on maize yield: I. modeling physiological responses. Agronomy Journal 87: 632–641. https://doi.org/10.2134/agronj1995.00021962008700040005x.
Sinclair, T.R., Muchow, R.C., and Monteith, J.L., 1997. Model analysis of sorghum response to nitrogen in subtropical and tropical environments. Agronomy Journal 89: 201–207.
Sinclair, T.R., Messina, C.D., Beatty, A., and Samples, M., 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agronomy Journal 102: 475–482. https://doi.org/10.2134/agronj2009.0195
Sinclair, T.R., Marrou, H., Soltani, A., Vadez, V., and Chandolu, K.C., 2014. Soybean production potential in Africa. Global Food Security 3: 31–40. https://doi.org/10.1016/j.gfs.2013.12.001
Sinclair, T.R., Soltani, A., Marrou, H., Ghanem, M., and Vadez, V., 2020. Geospatial assessment for crop genetic and management improvements. Crop Science. 60: 22.700-708. https://doi.org/10. 1002/csc2.20106. Accepted.
Soltani, A., Rezaei, A., and Khaje Pour, M.R., 2001. Genetic variety for some physiological and agronomic traits in grain sorghum. Journal Science Technology. Agricultural Nature Research 5: 127-136. (In Persian with English Summary)
Soltani, A., and Gholipoor, M. 2006. Simulation the impact of climate change on growth, yield and water use of chickpea. Journal of Agricultural Science and Natural Resources 13:2. 69-79.
 Soltani, A., 2009. Mathematical modeling of the crop. Jahad Daneshgahi of Mashhad Press, Iran. 175 p. (In Persian)
Soltani, A., and Sinclair, T.R., 2011. A simple model for chickpea development, growth and yield. Field Crop Resources 124: 252–260. https://doi.org/10.1016/j.fcr.2011.06.021.
Soltani, A., and Sinclair, T.R., 2012. Modeling Physiology of Crop Development, Growth and Yield. CABI Publication. 322 p.
Soltani, A., Maddah, V., and Sinclair, T.R., 2013. SSM-wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production 7: 711–740. https://doi.org/10.22069/IJPP.2013.1266.
Soltani, A., and Sinclair, T.R., 2015. A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crop Resources 175(1): 37–46. https://doi.org/10.1016/j.fcr.2014.10.019
Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Dadrasi, A., Zand, E., Ghassemi, S., Pourshirazi, S., Alasti, O., Hosseini, R.S., Zahed, M., Arabameri, R., Mohammadzadeh, Z., Rahban, S., Kamari, H., Fayazi, H., Mohammadi, S., Keramat, S., Vadez, V., van Ittersum, M.K., and Sinclair, T.R., 2020. SSM-iCrop2: A simple model for diverse crop species over large areas. Agricultural Systms 182: 102855. https://doi.org/10.1016/j.agsy.2020.102855.
Wahbi, A., and Sinclair, T.R., 2005. Simulation analysis of relative yield advantage of barley and wheat in an eastern Mediterranean climate. Field Crop Resources 91: 287–296.
Vadez, V., Halilou, O., Hissene, H.M., Sibiry-Traore, P., Sinclair, T.R., and Soltani, A., 2017. Mapping water stress incidence and intensity, optimal plant populations, and cultivar duration for African groundnut productivity enhancement. Frontiers in Plant Scienc 1-13. https://doi.org/10.3389/fpls.2017.00432.
Williams, J.R., Jones, C.A., Kiniry, J.R., and Spanel, D.A., 1989. The EPIC crop growth model. Transaction of the ASAE 32: 497–0511.
 
CAPTCHA Image