بررسی کاربرد گوگرد و کودهای زیستی بر شاخص‌های رشدی، روند ﺟﺬب و کارایی ﻣﺼﺮف نور نخود (Cicer arietinum L.)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه بقولات، پژوهشکده علوم گیاهی، دانشگاه فردوسی مشهد، ایران

2 گروه اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

3 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

4 پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران، شعبه مشهد، ایران.

5 دانشجوی دکترای فیزیولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد ایران.

چکیده

در ﮔﯿﺎﻫﺎن زراﻋﯽ ﺷﺎﺧﺺ ﺳﻄﺢ ﺑﺮگ، روند جذب و کارایی ﻣﺼﺮف ﻧﻮر ازجمله مهم‌ترین ﺧﺼﻮﺻﯿﺎت اﮐﻮﻓﯿﺰﯾﻮﻟﻮژﯾﮑﯽ ﻣﺤﺴﻮب می‌شوند ﮐﻪ در ارزﯾﺎﺑﯽ ﻣﯿﺰان ﻧﻮر ﺟﺬب ﺷﺪه، ﺗﻮﻟﯿﺪ ﻣﺎده ﺧﺸﮏ ﻣﺆﺛﺮ است. اﯾﻦ ﭘﮋوﻫﺶ در سال زراعی 1398-1397 در مزرعه دانشکده کشاورزی دانشگاه فردوسی مشهد به‌صورت بلوک کامل تصادفی، با 10 تیمار شامل: 1- گوگرد پاستیلی (Spa)، 2- گوگرد پودری (Spow)، 3- Spa + باکتری‌های اکسیدکننده گوگرد (SOB)، 4- Spa+SOB + باکتری‌های آزادزی تثبیت‌کننده نیتروژن (NFB) + باکتری‌های حل‌کننده فسفات (PSB) + باکتری‌های حل‌کننده پتاسیم (KSB)، 5- Spow+SOB، 6- Spow+SSB+NFB+PSB+KSB، 7- SOB+NFB+PSB+KSB، 8-NFB+PSB+KSB، 9- SOB 10- شاهد در سه تکرار اجرا شد. صفات و ویژگی‌هایی از قبیل شاخص سطح برگ، ماده خشک تجمعی، مقدار نور جذب شده و کارایی مصرف نور اندازه‌گیری شد. قبل از کشت، تیمارهای گوگرد به مقدار 2500 کیلوگرم در هکتار و باکتری‌ها به مقدار پنج لیتر در هکتار در کرت‌های موردنظر به خاک اضافه شدند. نتایج نشان داد بیشترین شاخص سطح برگ در تیمار Spa+SSB+NFB+PSB+KSB به‌دست آمد که نسبت به شاهد 29 درصد برتری داشت. همچنین بیشترین ماده خشک تجمعی و سرعت رشد محصول در تیمار Spow+SSB+NFB+PSB+KSB بود که نسبت به شاهد 31 و 14 درصد افزایش داشت. حداکثر تابش جذب شده متناسب با زمان وقوع بیشترین شاخص سطح برگ نخود بود، پس از آن به‌دلیل کاهش شاخص سطح برگ تا انتهای دوره رشد کسر تابش جذب شده نور روند کاهشی در پیش گرفت. همچنین بیش‌ترین کارایی ﻣﺼﺮف ﻧﻮر در تیمار Spa+SSB+NFB+PSB+KSB بود (R2=0.91**) که نسبت به شاهد 18 درصد برتری داشت. به‌طور‌کلی، نتایج نشان داد شاخص سطح برگ بالاتر سبب استفاده مؤثرتر از نور تابیده به کانوپی و جذب ‌شده توسط برگ‌های نخود درنتیجه افزایش کارایی مصرف نور و ماده خشک گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Sulfur and Biofertilizers on Growth Indices, Radiation Absorption, and Use Efficiency of Chickpea (Cicer arietinum L.)

نویسندگان [English]

  • Jafar Nabati 1
  • Ahmad Nezami 2
  • Afsaneh yousefi 3
  • Ehsan Oskoueian 4
  • Armin Oskoueian 5
1 Department of Legume Research Center for Plant Sciences, Ferdowsi University of Mashhad, Iran.
2 Department of Agrotechnology, Ferdowsi University of Mashhad, Iran.
3 Department of Agrotechnology, Ferdowsi University of Mashhad, Iran.
4 Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran
5 Ph.D. Student in Crop Physiology, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Introduction
 Leaf area index, radiation absorption and radiation use efficiency are important ecophysiological characteristics, which is useful in assessing the amount of light absorbed for dry matter production. Understanding how and managing the effects of ecological factors on plant reproduction is essential for achieving sustainability in agricultural production systems. On the other hand, the use of efficient crops in utilization of resources, especially solar radiation, is one of the fundamental approaches towards achieving this goal. The purpose of this study was to investigate the effect of sulfur and biofertilizers applications on growth indices, radiation absorption and use efficiency of chickpea.
Materials and Methods
 In order to determine the growth indices, radiation absorption, and radiation use efficiency (RUE) of chickpea, a field experiment was conducted in 2019 at the Agricultural Research Station of Ferdowsi University of Mashhad based on a completely randomized block design with ten treatments and three replications. The experimental treatments including: 1-Spa, 2-Spo, 3-Spa+SOB, 4-Spa+SOB+NFB+PSB+KSB, 5-Spo+SOB 6-Spo+SOB+NFB+PSB+KSB, 7-SOB+NFB+PSB+KSB, 8- NFB+PSB+KSB, 9-SOB and 10-Control. Sampling was started 20 days after planting by taking six destructive samples. The plant was sampled two weekly intervals to determine the growth parameters of chickpea including leaf area index (LAI), dry matter accumulation (DM), crop growth rate (CGR) and radiation use efficiency (RUE). For calculations of radiation use efficiency, it was necessary to estimate daily LAI and daily absorbed, the RUE was calculated based on g MJ-1 through the slope of a linear regression between total dry weight accumulations (g m-2), and cumulative absorbed the total daily solar radiation.
Results and Discussion
 The results showed that the highest leaf area index was obtained in Spa + SOB + NFB + PSB + KSB and Spo + SOB + NFB + PSB + KSB treatment which was 29 and 26 %  more than control, respectively. The application of pa + SOB and Spo + SOB treatment, which increased 12 and 7 % compared to control, respectively. In this study, sulfur was more important than other fertilizer treatments. The highest dry matter accumulation was obtained in Spo + SOB + NFB + PSB + KSB and Spa + SOB + NFB + PSB + KSB treatment which was 31 and 27% more than control. SOB and NFB + PSB + KSB treatments had the lowest amount of dry matter after control. The results showed that the highest crop growth rate observed in Spo + SOB + NFB + PSB + KSB treatment, which increased by 14% compared to control. The maximum absorbed radiation coincided with the highest leaf area index of chickpea. Then, Due to the decrease in leaf area index until the end of the growth period, the absorbed fraction of light absorbed a decreasing trend. The estimated RUE levels in different treatments were significantly different (P≤0.01). The highest radiation use efficiency was in Spa + SOB + NFB + PSB + KSB treatment (R2 = 0.91**) which was 18% more than control. Also, increasing leaf area can increase the plant's photosynthetic potential and increase dry matter, at finally to increased RUE.
Conclusion:
The results showed that treatments (Spo + SOB + NFB + PSB + KSB) and (Spa + SOB + NFB + PSB + KSB) with higher leaf area index resulted in more efficient use of canopy light absorbed by chickpea leaves as a result of increased radiation and dry matter efficiency. High slope radiation use efficiency indicates the high efficiency of a plant using sunlight and converting it to dry matter. Giving attention to a more frequent application of biological fertilizers could be considered as an essential agro-ecological approach, which results in healthier soil and water resources.

کلیدواژه‌ها [English]

  • Crop Growth Rate
  • Dry matter accumulation
  • Free-living nitrogen-fixing
  • Leaf Area Index
  • Sulfur solubilizing bacteria
Aboutalebian, M.A., and Elahi, M., 2016. Evaluation of changes in some physiological indices of chickpea (Cicer arietinum L.) affected by on-farm seed priming and bio-fertilizers at different phosphorus levels. Crop Production and Processing Isfahan University of Technology 6(20): 25-39. (In Persian with English Summery)
Awal, M.A., Koshi, H., and Ikeda, T., 2006. Radiation interception and use by maize/peanut intercrop canopy. Agriculture, Forest and Meteorology 139: 74-83.
Chaghazardi, H.R., Mohammadi, G., and Beheshti Ale-Agha, A., 2013. Effects of different amounts of sulfur and manure on soil acidity and plant traits of corn hybrid KSC 704. Field Crop Resaerch 11(1): 162-170. (In Persian with English Summery)
Dadrasi, V., Aboutalebian, M.A., Ahmadvand, G., Mousavi, S.S., and Seyedi, M., 2012. Effect of on-farm seed priming and irrigation interval on the growth indices of two corn cultivars (Zea mays L.). Agriculture Science 5(7): 64-75. (In Persian with English Summery)
De Sousza, E.B.M., Bassani, V.BL., Sperotto, R., and Granada, G.E., 2016. Inoculation of new rhizobialisilates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa). Life Science Food 24(3): 258-273.
Doaei, F., Nakhzari Moghaddam, A., Rahemi Karizaki, A. and Aldaghi, M., 2020. The effect of nutritional management on phenological stages, radiation use efficiency and seed yield of chickpea (Cicer arietinum L.) under influence of planting date 11(1): 49-61. (In Persian with English Summery)
Edreira, E., Mourtzinis, S., Azzari, G., Andradea, J., Conley, S., Lobellc, D., Spechta, J., and Grassinia, P., 2020. From sunlight to seed: Assessing limits to solar radiation capture and conversion in agroecosystems. Agricultural and Forest Meteorology 280: 423-435.
Egamberdiyeva, D., Juraeva, D., Gafurova, L., and Hoflich, G., 2002. Promotion of plant growth of maize by plant growth-promoting bacteria in different temperatures and soils. 25th Annals of Southern Conservation Tillage Conference, Auburn, AL, USA, 24-26 June 239-244.
FAO., 2019. Crop Production. Global Market Analysis. http://www.faostat Fao.org.Foodoutlook.com.
Goudriaan, J., and Van Laar, H.H., 1993. Modelling Potential Crop Growth Processes. Kluwer Academic Press pp, 236.
Hassanabadi, T., Ardakani, M., Rajali, F., and Pak Nejad, F., 2016. Effect of nitrogen fixation and solubilizing phosphate inoculation on yield and nitrogen uptake indices of barley (Hordeum vulgare L.) under different levels of nitrogen. Agriculture and Plant Breeding 8(3): 213-227. (In Persian with English Summery)
Hussain, S.A., Ahmad, K., Arif-un-Nisa Naqvi, T.K., Ahmed, M., Nafees, M.H., and Abass, Q., 2014. The colossal influence of biological fertilization on medicinal and aromatic plants. Biodiversity and Environmental Sciences 5(5): 299-314.
Jahan, M., Amiri. B., and Ehyaee. R., 2012. Radiation absorption and use efficiency of sesame as affected by biofertilizers in a low input cropping system. Field Crops Research 10(2): 435-447. (In Persian with English Summery)
Jahan, M., Nassiri Mahallati, M., Amiri, M.B., and Ehyayi, H.R., 2013. Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products 43: 606-661.
Kamaei, R., Jahan, M., and Parsa, M., 2015. Effects of biological, chemical and organic fertilizers on some physiological indices of hairy vetch (Vicia villosa Roth.) under greenhouse conditions. Science and Technology of Greenhouse Culture Soilless Culture Research Center 7(2): 87-96 (In Persian with English Summery)
Kukal, M., and Irmak, S., 2020. Light interactions, use and efficiency in row crop canopies under optimal growth conditions. Agricultural and Forest Meteorology 284: 896-919.
Nassiri Mahallati, M., 2008. Crop Production Ecology. In: A. Koocheki, and M. Khajeh Hosseini, (Eds.). Modern Agronomy: Jehade Daneshgahi Mashhad Publications, Mashhad, Iran.pp. 362-387.
Nazeri, P., Kashani, A., Kavazi, K., Aedakani, M., and Mirakhori, M., 2012. Effect of use microbial zinc granulated phosphorous bio fertilizer on growth indices of bean. Agronomy and Plant Breeding 8(42): 1-16. (In Persian with English Summery)
Ngouajio, M., McGiffen, J.M.E., and Hembree, K.J., 2001. Tolerance of tomato cultivar to velvet leaf interference. Weed Science 49(4): 91-98.
Ozoni Davaji, A., Esfahani, M., Sami Zadeh, H., and Rabiei, M., 2008. Effect of planting pattern and plant density on growth indices and radiation use efficiency of apetalous flowers and petalled rapeseed (Brassica napus L.) cultivars. Crop Science 9(2): 382-400 (In Persian with English Summery)
Paul, I.K., and Savithru, K., 2003. Effect of biofertilizers vs perfected chemical fertilization for sesame grown in summer rice fallow. Tropical Agriculture 41(3): 47-49.
Peter, F., 2010. Radiation use efficiency in spring barley under drought: A crosstalk between survival strategy and canopy structure. Central Eropean Agriculture 11(1): 83-92.
Prajapati, K., 2016. Impact of potassium solubilizing bacteria on growth and yield of mung bean Vigna radiata. Applied Research 6(2): 2949-55.
Rahemi Karizaki, A., Soltani, A., Purreza, J., and Zainali, E., 2007. Estimation of extinction coefficeint and radiation use efficiency in field-grown chickpea. Agricultural Sciences and Natural Resources 14: 211-221. (In Persian with English Summery)
Ravichandra, P., Gopal, M.A., Gangagni, R.M., Ramakrishna, V., and Annapurna Jetty, Y., 2007. Isolation of Thiobacillus sp. from aerobic sludge of distillery and dairy effluent treatment plants and its sulfide oxidation activity at different concentrations. Environmental Biology 28(4): 819-823.
Rezaei Chiyaneh, E., Pirzad, A., and Farjami, A., 2015. Effect of nitrogen, phosphorus and sulfur supplier bacteria on seed yield and essential oil of cumin (Cuminum cyminum L.). Agriculture Science and Sustainable Production 24(4): 71-83. (In Persian with English Summery)
Rosati, A., and Duong, T.M., 2003. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Annals of Botany 91: 869-87.
Ruzzi, M., and Aroca, R., 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 196: 124–134.
Salvagiotti, F., 2006. Sulfur and nitrogen deficiency reduces radiation interception, biomass production and grain yield in wheat. The 18th World Congress of Soil Science, July 9-15, 2006 - Philadelphia, Pennsylvania, USA.
Sarlikioti, V., Meinen, E., and Marcelis, L.F., 2011. Crop reflectance as a tool for the online monitoring of LAI and PAR interception in two different greenhouse crops. Biosystems Engineering 108: 114-120.
Shaharoona, B., Arshad, M., Zahir, A., and Khalid, A., 2006. Performance of Pseudomonas spp. containing acc-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Journal of Soil Biology and Biochemistry 38(9): 2971-2975.
Shen, H., Xinhua, Y., He, X., Liu, Y., Chen, Y., Tang, J., and Guo, T., 2016. Complex inoculant of N2-fixing, P and K solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets. Frontiers in Microbiology 7: 128-136.
Sinclair, T.R., and Horie, T., 1989. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: Review. Crop Science 29: 90-98.
Soltani, A., Khavazi, K., Asadi Rahmani, H., Omidvari, M., Abaszadeh, P., and Mirhoseyni, H., 2010. Plant growth promoting characteristics in some flavo bacterium spp. isolated from soils of Iran. Agricultural Science 2(4): 106-115.
Soltani, A., and Hoogenboom, G., 2007. Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research 103: 198-207.
Soltani, A., Robertson, M.J., Rahemi-Karizaki, A., Poorreza, J., and Zarei, H., 2006. Modelling biomass accumulation and partitioning in chickpea (Cicer arietinum L.). Agronomy and Crop Science 192: 379-389.
Steinmaus, S.J., and Norris, R.F., 2002. Growth analysis and canopy architecture of velvetleaf grown under light conditions representative of irrigated mediterranean-type agroecosystems. Weed Science 50(2): 42-53.
Tesfaye, K., Walker, S., and Tsubo, M., 2006. Radiation interception and radiation use efficiency of three grain legumes under water deficit conditions in a semi-arid environment. Agronomy 25: 60-70.
Vanlauwea, B., Hungriab, M., Kanampiua, F., Gillerc, K.E., 2019. The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Ecosystems and Environment 284: 1-13.
Vejdani Aram, S., Ahmadvand, G., and Hajinia, S., 2018. The effect of biological and chemical phosphorus fertilizers on radiation use efficiency, P concentration and yield of wheat cultivar (Pishgam). Crop Ecophiysiology 46(2): 171-190. (In Persian with English Summery)
Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., and Coppin, P., 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology 121: 37–53.
Zaefarian, F., Aghaalikhani, M., Rahimian Mashadi, H., Zand, E., and Rezvani, M., 2009. Yield and growth indices of corn/soybean intercrops under simultaneous competition of redroot pigweed and jimsonweed. Weed Science 5(2): 107-125. (In Persian with English Summery)
Zhang, L., Vander, W., Bastiaans, L., Zhang, S., Li, B., and Spiertz, J. H., 2008. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107: 29-42.