واسنجی و تعیین اعتبار مدل WOFOST برای پیش‌بینی فنولوژی و عملکرد سیب‌زمینی(Solanum tuberosum L.) در ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد، کارشناس اداره کل هواشناسی همدان، ایران.سی مشهد

2 گروه زراعت، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

مدل WOFOST یکی از پرکاربردترین مدل­های شبیه‌سازی رشد و نمو در گیاهان می­باشد که رشد، فنولوژی و عملکرد گیاه را به‌صورت روزانه در شرایط پتانسیل، کمبود آب و کمبود مواد غذایی شبیه‌سازی می­کند. در این مطالعه، به‌منظور واسنجی و تعیین اعتبار مدل WOFOST برای ارقام نیمه­دیررس سیب‌زمینی(Solanum tuberosum L.) در شرایط پتانسیل از داده‌های روزانه هواشناسی، اطلاعات فنولوژیکی و عملکرد در مناطق همدان، اردبیل، اصفهان، قروه، شیراز، جیرفت، مشهد، گرگان، شاهرود و دزفول طی سال‌های 93-1389 استفاده گردید. مراحل مختلف فنولوژیکی رشد (شامل کاشت تا سبز شدن، سبز شدن تا گل‌دهی و سبز شدن تا رسیدگی فیزیولوژیکی) با استفاده از مشاهدات عینی در مزرعه تعیین و بر اساس دمای هوا مقدار درجه-روز رشد مورد نیاز برای تکمیل هر مرحله محاسبه شد و برای واسنجی و تعیین اعتبار پارامترهای گیاهی مدل مورد استفاده قرار گرفت. مدل با داده‌های سه سال واسنجی گردید و پس از آن ضرایب مدل به‌منظور انطباق با شرایط مختلف اقلیمی کشور برای مراحل فنولوژیکی و عملکرد غده تغییر یافت و سپس با داده‌های دو سال تعیین اعتبار شد. برای ارزیابى دقت مقادیر شبیه‌سازی و اندازه‌گیرى شده عملکرد غده و مراحل فنولوژیکی زمان (سبز شدن، گل‌دهی و رسیدگی) از شاخص‌هاى آماری ضریب تبیین(R2) ، آزمونt ، جذر میانگین مربعات خطا(RMSE) ، جذر میانگین مربعات خطاى نرمال شده(RMSEn) ، حداکثر خطا(ME)  و ضریب کارآیى(E) استفاده گردید که همگی مطابقت نتایج شبیه‌سازی مدل با مشاهدات مزرعه‌ای را نشان دادند. نتایج نشان داد که جذر میانگین مربعات خطای مدل برای مراحل فنولوژیکی سبز شدن، گل‌دهی، رسیدگی فیزیولوژیکی به‌ترتیب 6/1، 3/2 و 4/6 روز و برای عملکرد غده 2933 کیلوگرم در هکتار به‌دست آمد. همچنین جذر میانگین مربعات خطاى نرمال شده برای مراحل فنولوژیکی سبز شدن، گل‌دهی، رسیدگی فیزیولوژیکی و عملکرد غده به‌ترتیب 5/9، 3/8، 6/5 و 8/5 درصد محاسبه گردید که نشان‌دهنده درجه ناچیز خطای مدل بود. بر اساس نتایج حاصله مدل قادر خواهد بود عملکرد و مراحل فنولوژیکی را در مناطق مختلف ایران در حد مطلوب شبیه‌سازی نماید. با این­حال، پیشنهاد می‌شود مدل برای سایر ارقام با تیپ رشدی متفاوت نیز ارزیابی گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Calibration and Validation of WOFOST Model for Predicting the Phenology and Yield in Potato (Solanum tuberosum L.) Growing Regions in Iran

نویسندگان [English]

  • Mojtaba Torkaman 1
  • Mahdi nasiri mahalati 2
  • Alireza koocheki 2
1 Ph.D. in Crop Ecology, Department of Agriculture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. Expert of Hamedan Meteorology Office, Iran.
2 Department of Agriculture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Introduction  
Food and Agriculture Organization of the united nations (FAO) stated potato as a product supplier in the world's future food security and Iran with an annual production of 5 million tons of potatoes ranked eleventh in the world's total production. Future climate change may have strong influence on field crops including potato and evaluation of these effects is of great importance. Crop simulation models are known as powerful tools to study crop responses to the future climatic scenarios. However, such models should be calibrated and validated for local conditions before using in climatic studies at regional scale. WOFOST (WOrld FOod STudies) is a well- known crop simulation model and during the past two decades has been widely used in various studies. Simulation method of WOFOST is based on leaf photosynthesis and the assimilates are converted to dry matter of different plant organs using specific conversion factors, after subtraction of the calculated values of maintenance and growth respiration. The model also simulated phenological stages of crop based on accumulated degree days. For simulation of potential yield WOFOST inputs are daily weather data and crop specific parameters. In previous studies WOFOST model was calibrated for several crops such as wheat, corn and sugar beet in different parts of Iran but not for potato. The aim of this study was to calibrate and statistically validate the WOFOST model for predicting phenology and tuber yield of potato under potential growth conditions in different climatic regions of Iran.
 
Materials and Methods
Yield, phenological and weather data of major potato production regions of Iran (Hamedan, Ardabil, Isfahan, Ghorveh, Shiraz, Jiroft, Mashhad, Gorgan and Dezful) covering wide range of climatic conditions were collected from official databases and field observations for 5 years (2010-2014). The model was calibrated under potential production conditions for semi-late varieties (e.g. Agria) with the dataset of 3 years and the remaining 2-year data was used for model validation. Calibration was conducted using FSEOPT sub-program which optimizes the model parameters with the lowest deviation between measured and simulated yield and phenological variables.
Predicted results of yield and phenological stages were tested against observed values during model validation. The model performance was statistically evaluated using coefficient of determination (R2), t-test, root mean square error (RMSE), normalized root mean square error (RMSEn), maximum error (ME) and coefficient of efficiency (E).
 
Results and Discussion
During the ccalibration, fewmodel parameters and functions including thermal time from emergence to initiation of flowering (TSUM1), thermal time from initiation of flowering to maturity (TSUM2), specific leaf area as a function of development stage (SLATB), lower threshold temperature for ageing of leaves (TBASE), maximum leaf CO2 assimilation rate as a function of development stage of the crop (AMAXTB) and air temperature affecting photosynthetic rate (TMPFTB) was amended. It should be noted that for regions with cold summers such as Ardabil, Oromieh or Sarab TSUM2 was set at 1580 °Cd which is relatively lower than 1789 °Cd used for other parts of the country. Validation of model with independent data showed a great compliance of simulation results with field observations. Average simulated tuber yield over all regions and the studied period was 52061 kg ha-1 that was reasonably close to the mean observed potato tuber yield of 50650 kg ha-1 and the same was obtained for phenological variables. RMSE for tuber yield was 2933 kg ha-1 and for time to emergence, flowering and physiological maturity were estimated as 1.6, 3.2 and 6.4 days, respectively. RMSEn for phenological stages such as days to emergence, flowering, physiological maturity and tuber yield were 9.5, 8.3, 5.6 and 5.8%, respectively showing good model accuracy.
Conclusion
Based on the results the WOFOST model will be able to simulate the yield and phenological stages of potato with an acceptable performance at different regions of Iran. The calibrated model can be successfully used for climate change impact studies and yield gap analysis of potato under wide range of climatic conditions over country. However, it seems that the model should be also assessed for other potato cultivars with different growth habits.
 

کلیدواژه‌ها [English]

  • Coefficient of model efficiency
  • Modelling
  • Phenological stages
  • Potential conditions
  • Statistical indices
Amiri, E., 2009. Application of WOFOST model for predict growth of rice in dry condition. In: Proceedings of the Second national seminar on the effects of drought and its management strategies. Isfahan Agricultural Research Center, 25-26 May, Isfahan, Iran. (In Persian)  
Amiri, E., Rezaei, M., Motamed, M.K., and Emami, S., 2011. Evaluation of the crop growth model WOFOST under irrigation management. Agronomy Journal (Pajouhesh and Sazandegi) (90): 9-17. (In Persian with English Summary)
Bafkar, A., Boroumandnasab, S., Behzad, M., andFarhadi Bansouleh, S., 2011. Estimation of potential yield of grain maize in Mahidasht, Kermanshah using WOFOST, a crop growth simulation model. Iranian Journal of Field Crop Sciences 42(4): 799-808. (In Persian with English Summary), https://dorl.net/dor/20.1001.1.20084811.1390.42.4.15.7
Boogaard, H.L., Diepen, C.A., Van, Eerens, H., Kempeneers, P., Piccard, I., Verheijen, Y., and Supit, I., 2002. Description of the MARS Crop Yield Forecasting System (MCYFS). METAMP (Methodology Assessment of MARS Predictions), Report 1/3, Alterra, Vlaamse Instelling voor Technologisch Onderzoek (VITO), Supit Consultancy, Wageningen, Mol, Houten.
Bouman, B.A.M., and Van Laar, H.H., 2006. Description and evaluation of the rice growth model ORYZA2000 under nitrogen limited conditions. Agricultural Systems 87: 249–273, https://doi.org/10.1016/j.agsy.2004.09.011.
Catalin, L., Bettina, B., Fabio, M., and Doniela Anca, L., 2009. Adaptation of WOFOST model from CGMS to Romanian condition. Journal of Plant Development 16: 97- 102, https://www.researchgate.net/publication/41506387.
Dua, V.K., Govindakrishnan, P.M., and Singh, B.P., 2014. Calibration of WOFOST Model Potato in India. Potato Journal 41(2): 105-112,  https://www.researchgate.net/publication/292250301.
Eitzinger, J., Trnka, M., Hosch, J., Zalud, Z., and Dubrovsky, M., 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modeling 171: 223-246, https://doi.org/10.1016/J.ECOLMODEL.2003.08.012 .
Fabeiro, C., Martin De Santa, Olalla, F., and De Juan, J.A., 2001. Yield and size of deficit irrigated potatoes. Agricultural Water Management 48: 255–266.
FAOSTAT, 2012. Food and agricultural commodities production. Food and Agriculture Organisation of the United Nations. http://faostat.fao.org/site/339/default.aspx.
Farhadi Bansouleh, B., 2009. Development of a spatial planning support system for agricultural policy formulation related to land and water resources in Borkhar and Meymeh District, Iran. Ph.D. Thesis in ITC/ Wageningen University, Enschede, Wageningen, The Netherlands.
Goudriaan, J., 1986. A simple and fast numerical method for the computation of daily totals of canopy photosynthesis. Agricultural and Forest Meteorology 43: 251–255.
Griffin, T.S., Johnson, B.S., and Ritchie, J.T. 1993. A Simulation Model for Potato Growth and Development: SUBSTOR-Potato, Version 2.0, 5 p.
Hengsdijk, H., Bouman, B.A.M., Nieuwenhuyse, A., and Jansen, H.G.P., 1999. Quantification of land use systems using technical coefficient generators: A case study for the Northern Atlantic zone of Costa Rica. Gricultural Systems 61(2): 109-121
Hijmans, R.J., Guiking-Lens I.M., and Van Diepen, C.A., 1994. WOFOST 6.0; User’s guide for the WOFOST 6.0 crop growth simulation model. Technical Document 12. DLO Winand Staring Centre, Wageningen.
Hoogenboom, G., Wilkens, P., and Tsuji, G., 1999. DSSAT v3, Vol.4. University of Hawaii, Honolulu, Hawaii.
Kalra, N., Chander, S., Pathak, H., Aggarwal, P.K., Gupta, N.C., Sehgal, M., andChakarborty, D., 2007. Impact of climate change on agriculture. Outlook on Agriculture 36: 109-118, https://doi.org/10.5367/000000007781159903.
Koocheki, A., Nassiri Mahallati, M., Bodagh Jamali, J., and Marashi, H., 2006. Evaluation of the effects of climate change on growth characteristics and yield of rainfed wheat in Iran. Iranian Journal of Agricultural Sciences and Industries 20(7): 83-95. (In Persian with English Summary)
Meteorological Organization of Hamedan. 2012. Annual studies of agricultural meteorological bulletins, Study of weather condition effects on potato varieties such as Pashandi, Draga, Marfuma and Agria during years of 1991- 2011 Meteorological Organization of Hamedan Bulletins of Agricultural Meteorological (In Persian).
Parvizi, K., 2008. Evaluation of quantitative and qualitative traits of late and early ripening advanced potato cultivars. Pajouhesh and Sazandegi (79): 80-90. (In Persian with English Summary)
Rappoldt, C., 1986. Crop growth simulation model WOFOST. Documentation version 3.0. CWFS, Amsterdam, Wageningen. http://www.wageningenur.nl/wofost
Richter, G.M., and Semenove, M.A., 2005. Modeling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agricultural Systems 84(1): 77-97, https://doi.org/10.1016/j.agsy.2004.06.011.
Sarparast, R., and Mashayekhi, K., 2014. Heat unit evaluation of potato genotypes for determining different maturity groups in Gorgan region. Electronic Journal of Crop Production 7(3): 123-143. (In Persian with English Summary) https://doi.org/ 10.22069/EJCP.2022.6092.
Singh, J.P., Lal, S.S., Govindakrishnan, P.M., Dua, V.K., and Pandey, S.K., 2010. Impact of climate change on potato in India. In: Challenges of Climate Change: Indian Horticulture. Singh, H.P., Singh, J.P., and Lal, S.S. (Eds.). Westville Publishers, New Delhi, India. p. 90-99.
Spitters, C.J.T., Toussaint, H.A.J.M., and Goudriaan, J., 1986. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I: Components of incoming radiation. Agricultural and Forest Meteorology 38: 217-229.
Stol, W., Rouse, D.I., Van Kraalingen, D.W.G., and Kiepper, O., 1992. FSEOPT, a FOTRAN Program for Calibration and Uncertainly analysis of Simulation Models. Simulation Reports CABO-TT 24. CABO-DLO, WAU-TPE, Wageningen.
Supit, I., Hooyer, A.A., and Van Diepen, C.A., 1994. System description of the WOFOST 6.0 crop simulation model implemented in CGMS. Vol. 1: Theory and algorithms. EUR publication 15956, Agricultural series, Luxembourg, 146 p.
Tsuji, G., Hoogenboom, G., and Thornton, P., 1998. Understanding Options for Agricultural Production. Kluwer Academic Publication, 399 pp.
Van Diepen, C.A., Rappoldt, C., Wolf, J., and Van Keulen, H., 1988. Crop growth simulation model WOFOST. Documentation version 4.1, Centre for world food studies, Wageningen. https://www.wur.nl › wageningen-university.
Van Ittersum, M.K., Leffelaar, P.A., Van Keulen, H., Kropff, M.J., Bastiaans, L., and Goudriaan, J., 2003. On applications of the Wageningen crop models. European Journal of Agronomy 18(3-4): 201-234, https://doi.org/10.1016/S1161-0301(02)00106-5.
Van Keulen, H., 1986. The collection and treatment of basic data. Plant data. In: Van Keulen and Wolf, p. 235-247.
Van Keulen, H., and Van Diepen, C.A., 1990. Crop Growth Models and Agroecological Characterization. In: Scaife, A. (Ed.): Proceedings of the First Congress of the European Society of Agronomy, 5-7 December 1990, Paris. CEC, ESA, INRA. Session 2: 1-16. Paris
Vazifedoust, M., 2007. Development of an agricultural drought assessment system: Integration of agrohydrological modelling, remote sensing and geographical information. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands.
Wolf, J., 2003. Calibration of WOFOST crop growth simulation model for use within CGMS. Wageningen University. http://www.wofost.wur.nl
Wolf, J., and Oijen, M.V., 2002. Modelling the dependence of European potato yields on changes in climate and CO2. Agricultural and Forest Meteorology 112: 217-31, https://doi.org/10.1016/S0168-1923(02)00061-8.
 Wolf, J., and Van Diepen, C.A., 1994. Effects of climate change on silage maize production potential in the European Community. Agricultural Forest Meteorology 71(1/2): 33-60.
Wu, D., 2008. Impact of spatial- temporal variations of climatic variables on summer maize yield in North China plain. European Journal of Agronomy 24(3): 226-235. ISSN: 1735-6814 (Print), 1735-8043 (Online).
 
CAPTCHA Image