ارزیابی خدمات و بیلان کربن خاک در اکوسیستم‌های مختلف کشاورزی در استان خراسان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

2 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

چکیده

به‌منظور ارزیابی خدمات و کارکردهای خاک­ تحت تأثیر مدیریت­های مختلف پرنهاده و کم­نهاده در استان خراسان، نمونه­برداری از 10 مکان تحت مدیریت­های مختلف زراعی و باغی در قالب طرح کاملاً تصادفی با چهار نمونه به‌عنوان تکرار از هر نوع مدیریت در بهار سال 1393 انجام شد. نمونه­برداری از عمق 30-0 سانتی­متر خاک در مزارع کم­نهاده شامل مزارع چندساله زعفران و باغات میوه و مزارع پرنهاده یک‌ساله کشاورزان شامل گندم و ذرت و مزارع ‌ساله آزمایشی (مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد) برداشت و خصوصیات مختلف فیزیکی (شامل وزن مخصوص ظاهری)، شیمیایی (شامل محتوی کربن آلی، نیتروژن کل، فسفر قابل دسترس، پتاسیم قابل دسترس، شاخص واکنش و هدایت الکتریکی) و بیولوژیکی (میزان کربن زیست‌توده میکروبی، فعالیت آنزیم­های فسفاتاز و دهیدروژناز) اندازه­گیری شد. سطح زیر کشت و میزان مصرف نهاده­های شیمیایی شامل نیتروژن، فسفر، پتاسیم، علف­کش، حشره­کش و قارچ­کش محصولات زراعی شامل گندم، گوجه­فرنگی، یونجه، ذرت، سیب­زمینی، چغندرقند و کلزا طی سال 1393 تعیین شد. میزان انتشار گازهای گلخانه‏ای شامل دی­اکسید کربن (2CO)، اکسید نیتروژن (O2N) و متان (4CH) با استفاده از ضرایب انتشار و سپس پتانسیل گرمایش جهانی تعیین گردید. نتایج نشان داد که اثر نوع مدیریت اکوسیستم بر کلیه خصوصیات مورد مطالعه خاک به‌جز شاخص واکنش معنی­دار (01/0≥p) بود. به‌کارگیری مدیریت پرنهاده و رایج در مزارع آزمایشی و یک‌ساله کشاورزان باعث کاهش محتوی کربن آلی، نیتروژن کل، فسفر قابل دسترس، پتاسیم قابل دسترس، هدایت الکتریکی، کربن زیست‌توده میکروبی، فعالیت آنزیم­های فسفاتاز و دهیدروژناز و ترسیب کربن خاک در مقایسه با مزارع چندساله زعفران شد، در حالی­که وزن مخصوص ظاهری افزایش یافت. بیشترین و کمترین کربن آلی خاک به‌ترتیب برای باغ­های چندساله و مزارع رایج یک‌ساله آزمایشی با 104/0 و 036/0 درصد حاصل شد. بیشترین و کمترین کربن ترسیب شده خاک به‌ترتیب برای باغ­های چندساله و مزارع رایج یک‌ساله آزمایشی با 31/355 و 48/182 کیلوگرم کربن در هکتار مشاهده شد. اجرای عملیات مدیریتی در مزارع چندساله، مزارع یک‌ساله ذرت و مزارع یک‌ساله گندم به‌ترتیب موجب کاهش 12، 35 و 41 درصدی کربن ترسیب شده خاک در مقایسه با باغ­های چندساله شد. بیشترین پتانسیل گرمایش جهانی برای سیب­زمینی با 69/3 تن معادل 2CO به‌ازای هر هکتار محاسبه شد که نسبت به گندم، چغندرقند، گوجه­فرنگی و ذرت به‌ترتیب 53، 37، 16 و 12 درصد بالاتر بود. کمترین پتانسیل گرمایش جهانی برای کلزا با 35/1 تن معادل 2CO به‌ازای هر هکتار به‌دست آمد. بدین­ترتیب، کاهش مصرف کودهای شیمیایی و افزایش مصرف انواع نهاده­های آلی را می­توان به‌عنوان راهکاری اکولوژیک در مدیریت پایدار اکوسیستم­های زراعی مدنظر قرار داد که از طریق کاهش انتشار گازهای گلخانه­ای و به تبع آن تخفیف تغییر اقلیم را به دنبال دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Soil Ecosystem Services and Carbon Balance for Different Agroecosystems in Khorasan

نویسندگان [English]

  • Alireza Koocheki 1
  • Surur Khorramdel 2
1 Department of Agrotechnology, Ferdowsi University of Mashhad, Iran.
2 Department of Agrotechnology, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Introduction
Soil is the basic element for all ecosystem services which enhances different functions of ecosystems. It  provides  and  regulates  a  large  number  of  ecosystem  services and functions, and  plays  an  important  role  in  human health. Results of some experiments indicate a positive correlation between ecologically-based soil management with qualitative soil indices. Increase in soil organic matter enhances 10 different functions in agricultural ecosystems including biogeochemical cycle, nutrient returns, formation, and stability of soil aggregate, water purification and holding capacity, pH regulation, decreasing of erosion and finally crop growth improvement. In agricultural ecosystems, crop yield is notably dependent on soil properties. It has been stated that maintaining function and services of ecosystems could only be achieved by proper soil management. As a  consequence  of  land use, global warming, climate  change  and  conventional management,  soil  ecosystem services  are  being  drastically  degraded,  endangering food safety for coming generations. This  decreases  soil  ecosystem  services  and functions regulation  capacity  and  affects  the  sustainability  of  the  communities. It has been observed that no-tillage system which results in less soil disturbance and more accumulated crop residue has physical, chemical, and biological properties.
Materials and Methods
In order to evaluate soil ecosystem services based on different low and high input management in Khorasan province, the samples were taken from 10 sites by completely randomized design with four replications in 2014. The soil samples were collected from the depth of 0-30 cm in low input fields of saffron and orchards, high input wheat and corn fields, and annual research field (Agricultural Research Station, Ferdowsi University of Mashhad). Physical and chemical soil properties such as bulk density, organic carbon, total nitrogen, available P and K, pH, electrical conductivity (EC), and also biological criteria including microbial biomass carbon, dehydrogenase, and phosphatase enzyme activity were measured. Inputs used including chemical fertilizer, herbicide, insecticide, fungicide and also the acreage for wheat, tomato, alfalfa, corn, potato, sugar beet and canola were determined during the growing season of 2013-2014. After calculating greenhouse gases emission including CO2, N2O and CH4 based on emission indices, global warming potential was computed.
Results and Discussion
Results showed that type of ecosystem management affected all soil properties except the acidity (p ≤ 0.01). Management of high input and annual field crops (experimental) and also farmers’ fields caused reduction of organic carbon content, total nitrogen, available P, available K, EC, microbial biomass carbon, dehydrogenase and phosphatase enzyme activity and carbon sequestration in comparison with perennial field of saffron. However, bulk density was reduced. The highest and the lowest carbon contents were observed for orchard and annual experimental fields with 0.104 and 0.036 percent, respectively. The highest and the lowest sequestered carbon were observed for orchard and annual field crops (experimental) with 335.31 and 182.48 kg carbon per ha, respectively. Management of perennial fields (saffron), annual corn field and annual wheat field caused reduction of 12, 35 and 41 percent, respectively, in sequestered carbon compared with that for orchard fields. The highest global warming potential (GWP) was recorded for corn and potato with 3.69 ton CO2 equivalent per ha which was 53, 37, 16 and 12 percent higher than those for wheat, sugar beet, tomato and corn, respectively. The lowest GWP was recorded for canola with 1.35 ton CO2 equivalent per ha.
Conclusion
It can be concluded that reduction of chemical fertilizer and applying more organic inputs seem to be rational ecological approaches for sustainable management of the cropping ecosystem with a consequence of reduction in greenhouse gases and climate change mitigation. These sustainable practices are crucial to improve soil biodiversity. Using pesticides and herbicides has, however, a negative impact on biodiversity.
Acknowledgement
This research (29347.2) was funded by the vice chancellor for research of Ferdowsi University of Mashhad, which is hereby acknowledged.

کلیدواژه‌ها [English]

  • Emission of greenhouse gases
  • Chemical fertilizer
  • Intensive management
  • Perennial field
  • Organic input
Addiscott, T., 2005. Nitrate, Agriculture and the Environment. CABI, Science 279 pp.
Alberti, G., Vedove, G.D., Zuliani, M., Peressotti, A., Castaldi, S., and Zerbi, G., 2010. Changes in CO2 emissions after crop conversion from continuous maize to an Agriculture alfalfa. Agriculture, Ecosystems and Environment 136(1-2): 139-147.
Alvarez, R., and Steinbach, H.S., 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104: 1–15.
Anderson, T.H., 2003. Microbial eco-physiological indicators to assess soil quality. Agriculture, Ecosystems and Environments 98: 285-293.
Asmus, C.D., 2009. Soil aggregation and carbon sequestration. Fallowing a single tillage event in no-till soils in a semi- arid environment. A MSc. Thesis of Agronomy College of Agriculture, Kansas State University. 173 pp.
Bahadar, K.M., Arif, M., and Khan, M.A., 2007. Effect of tillage and Zinc application methods on weeds and yield of maize. Pakistan Journal of Botany 39: 1583-1591.
Balota, E.L., Colozzi-Filho, A., Andrade, D.S., and Dick, R.P., 2003. Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils 38: 15-20.
Bengtsson, J., Ahnström, J., and Weibull, A.C., 2005. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. Journal of Applied Ecology 42(2): 261-269.
Bhardwaj, A.K., Jasrotia, P., Hamilton, S.K., and Robertson, G.P., 2011. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture, Ecosystems and Environment 140: 419–429.
Black, C.A., 1965. Methods of Soil Analysis. (V. I). American Society of Agronomy 1572 pp.
Bowman, R.A., Vigil, M.F., Nielsen, D.C., and Anderson, R.L., 1999. Soil organic matter changes in intensively cropped dryland systems. Soil Science Society of America Journal 63: 186–191.
Brady, N.C., and Weil, R.R., 2002. The Nature and Properties of Soils, 13th ed. Prentice Hall. 960 pages.
Bremer, D.J., Ham, J.M., Owensby, C.E., and Knapp, A.K., 1998. Responses of soil respiration to clippling and grazing in a tallgrass prairie. Journal of Environmental Quality 27: 1539-1548.
Bremer, E., 2009. Potential for Reductions in Greenhouse Gas Emissions from Native Rangelands in Alberta (Technical Scoping Document). pp. 24.
Bremner, J.M., 1970. Nitrogen total, regular Kjeldahl method, In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd Ed. Agronomy 9(1). A. S. A. Inc., S. S. S. A. Inc., Madison Publisher, Wisconsin, USA, pp. 610-616.
Bushby, H.V.A., and Marshall, K.C., 1977. Some factors affecting the survival of root-nodule bacteria on desiccaticcation. Soil Biology and Biochemistry 9: 143-147.
Campbell, C.A., McConkey, B.G., Zentner, R.P., Selles, F., and Curtin, D., 1996. Long-term effects of tillage and crop rotations on soil organic C and total N in a clay soil in southwestern Saskatchewan. Canadian Journal of Soil Science 76: 395-401.
Campbell, C.A., Zentner, R.P., Liang, B.C., Roloff, G., Gregorich, E.G., and Blomert, B., 2000. Organic C accumulation in soil over 30 years in semiarid south-western Saskatchewan-effect of crop rotation and fertilizers. Canadian Journal of Soil Science 80: 179-192.
Chen, H.Q., Marhan, S., Billen, N., and Stahr, K., 2009. Soil organic carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg, southwest Germany. Journal of Plant Nutrition and Soil Science 172: 32–42.
Clapp, C.E.,  Allmarasa, R.R., Layeseb, M.F., Lindena, D.R., and Dowdya, R.H., 2000. Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil and Tillage Research 5: 127-142.
Daily, G.C., Alexander, S., and Ehrlich, P.R., 1997. Ecosystem services: benefits supplied to human societies by natural ecosystems, Issues in Ecology A publication of the Ecological Society of America, Washington, DC. 2: 18–24.
Dalal, R.C., Wang, W., Robertson, P., and Parton, W.J., 2003. Nitrous oxide emission from Australian agriculture lands and mitigation options: A review. Australian Journal of Soil Research 41: 165–195.
Datta, A., Santra, S.C., and Adhya, T.K., 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmospheric Environment 66: 123-130.
De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N., and Pisante, M., 2007. Notillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil and Tillage Research 92: 69–78.
Derner, J.D., and Schuman, G.E., 2007. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. Journal of Soil and Water Conservation 62(2): 77-85.
Diaz, R.J., and Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891): 926-929.
Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., and Kuzyakov, Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on aggregate size. Global Change Biology 15: 1603–1614.
Drinkwater, L.E., Letourneau, D.K., Workneh, F., Van Bruggen, A.H.C., and Shennan, C., 1995. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecological Applications 5: 1098–1112.
Edmeades, D.C., 2003. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems 66(2): 165-180.
Edwards, J.H.,Wood, C.W., Thurlow, D.L., and Ruf, M.E.,  1992. Tillage and crop rotation effects on fertility status of a hapludult soil. Soil Science Society of America Journal 56: 1577-1582.
Egli, T., 1991. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie van Leeuwenhoek 60: 225-234.
Ellert, B.H., and Bettany, J.R., 1995. Calculation of organic matter and nutrients stored in soil under contrasting management regimes. Canadian Journal of Soil Science 75: 529-538.
Environmental Protection Agency (EPA). 1998. National Air Quality and Emission Trends Report, Report EPA 454/R-00-003, 2000.
Fliessbach, A., Oberholzer, H.R., Gunst, L., and Mäder, P., 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment 118(1-4): 273-284.
Follett, R.F., Porter, L.K., and Halvorson, A.D., 1995. 15N-labeled fertilizer dynamics in soil in a 4-year, no-till cropping sequence. In: Nuclear Techniques in Soil-Plant Studies for Sustainable Agriculture and Environmental Preservation. Proceedings of an International Symposium sponsored by the IAEA and FAO, Vienna, Austria, October 17–21, 1994, pp. 165-174.
Forgani, A., 2003. Study of biochemical changes and humic and fulvic acids for different treated soils with organic matters. The 8th Iranian Soil Science Congress, August 31- September 3. pp. 15. (In Persian with English Summary)
Forouzeh, M.R., Heshmati, G., Ghanbarian, G., and Mesbah, S.H., 2008. Effect of floodwater irrigation on carbon sequestration potential of Helianthemum lippii (L.) Pers., Dendrostell eralessertii van Tiegh. and Artemisia sieberi Besser. in the Gareh Bygone plain: A Case study. Journal of Environmental Studies 46: 65-72. (In Persian with English Summary)
García, C., Hernández, M.T., and Costa, F., 1997. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Soil Science and Plant Nutrition 28: 123–134.
Gee, G.W., and Bauder, J.W., 1986. Particle size analysis, In: Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd Ed. Agronomy 9(1). A.S.A., Inc., S.S.S. A. Inc., Madison Publisher, Wisconsin, USA.
Gomiero, T., Pimentel, D., and Paoletti, M.G., 2011. Is there a need for a more sustainable agriculture? Critical Reviews in Plant Sciences 30(1): 6-23.
Graham, M.H., Haynes, R.J., and Meyer, J.H., 2002. Soil organic matter content and quality: Effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry 34: 93-102.
Gu, Y., Zhang, X., Tu, S., and Lindström, K., 2009. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments underwheat-rice cropping. European Journal of Soil Biology 45: 239–246.
Guillou, C.L., Angers, D.A., Leterme, P., and Menasseri-Aubry, S., 2011. Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry 43: 1955-1960.
Hajjar, R., Jarvis, D.I., and Gemmill-Herren, B., 2008. The utility of crop genetic diversity in maintaining ecosystem services. Agriculture Ecosystems and Environment 123(4): 261-270.
Halvorson, A.D., Reule, C.A., and Follett, R.F., 1999. Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Science Society of America Journal 63: 912–917.
Hao, X.H., Liu, S.L., Wu, J.S., Hu, R.G., Tong, C.L., and Su, Y.Y., 2008. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutrient Cycling in Agroecosystems 81: 17–24.
Harrison, A.F., 1987. Soil Organic Phosphorus. C.A.B. International United Kingdom. 257 pp.
Hayes, T.B., Khoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., and Stueve, T., 2010. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proceedings of the National Academy of Sciences 107(10): 4612.
He, Z.L., Wu, J., ODonnell, A.G., and Syers, J.K., 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soil sunder pasture. Biology and Fertility of Soils 24: 421-428.
Hojati, S., Nour Bakhsh, F., and Khavazi, K., 2006. Microbial biomass index, enzyme activities and corn yield in a soil amended with sewage sludge. Iranian Journals of Soil and Waters Sciences 20(1): 84-93. (In Persian with English Summary)
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., and Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75(1): 3-35.
Hutchins, S.R., Sewell , G.W., Kovacs, D.A., and Smith, G.A., 1991. Biodegradation of aromatic hydrocarbons by aquifer micro-organisms under denitrifying conditions. Environmental Science and Technology 25: 68–76.
Imeson, A., 2011. Desertification, Land Degradation and Sustainability. Wiley-Blackwell, Oxford. 326 pages.
IPCC., 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental panel on climate change. Greenhouse Gas Inventory Reference Manual, vol. 4.
IPCC., 2007. Summary for Policy Makers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge University Press, Cambridge.
Jackson, L., Rosenstock, T., Thomas, M., Wright, J.W., and Symstad, A., 2009. Managed ecosystems: biodiversity and ecosystem functions in landscapes modified by human use. pp. 178-194. In: Naeem, S., Bunker, D.E., Hector, A., Loreau, M., Perrings, C., (Eds.). Biodiversity, Ecosystem Functioning and Human Wellbeing. Oxford University Press Inc., New York, New York, USA. 384 pages.
Jenkinson, D.S., and Powlson, D.S., 1976. The effects of biocide treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Soil Biochemistry 8: 209-213.
Jihad Keshavarzi Khorasan Razavi. 2013. Statistical Yearbookof agriculture. Jihad Keshavarzi Khorasan Razavi. Mashhad, Iran. 219 pp. (In Persian)
Jin, H., Hongwen, L., Xiaoyan, W., Hugh, A., Wenying, L., Huanwen, G., and Kuhn, N., 2007. The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil and Tillage Research 94: 493-502.
Kahlon, M.S., Lal, R., and Ann-Varughese, M., 2013. Twenty-two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research 126: 151-158.
Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., and Wilkes, A., 2010. Greenhouse gas emissions from nitrogen fertilizer use in China. Environmental Science and Policy 13: 688–694.
Khajeh Pour, M.R., 2004. Principles and Basics of Agronomy. Publication of Isfahan Jihad Daneshgahi of Isfahan University, Isfahan, Iran. (In Persian)
Khan, F.U.H., Tahir, A.R., and Yule, I.J., 2001. Intrinsic implication of different tillage practices on soil penetration resistance and crop growth. International Journal of Agriculture and Biology 3: 23-26.
Khorramdel, S., Koocheki, A., Nassiri Mahallati, M., Khorasani, R., and Ghorbani, R., 2013. Evaluation of carbon sequestration potential in corn fields with different management systems. Soil and Tillage Research 133: 25-31.
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., and Movahedi, M., 2013. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333-338.
Khurshid, K., Iqbal, M., Arif, M.S., and Nawaz, A., 2006. Effect of tillage and mulch on soil physical properties and growth of maize. International Journal of Agriculture and Biology 8: 593-596.
Koocheki, A., and Nassiri Mahallati, M., 2015. Life cycle assessment (LCA) for wheat production systems of Iran: Comparison of inputs level. Journal of Agroecology in Press. (In Persian with English Summary)
Koocheki, A., Khorramdel, S., and Jafari, L., 2014. Evaluation of environmental consequences for agroecosystems under conventional management in Khorasan province. Journal of Agroecology in Press (In Persian with English Summary)
Kremen, C., and Miles, A., 2012. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society 17(4): 40-64.
Kreuter, U.P., Harris, H.G., Matlock, M.D., and Lacey, R.E., 2001. Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics 39: 333–346.
Kundu, S., Bhattacharyya, R., Prakash, V., Ghosh, B.N., and Gupta, H.S., 2007. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil and Tillage Research 92: 87–95.
Lal, L., 2002. Soil carbon dynamics in cropland and rangeland. Environmental Pollution 116: 353–362.
Lal, R., 1976. No tillage effects on soil properties under different crops in Western Nigeria. Proceedings of Soil Science Society of America 40: 762–768.
Lal, R., 1993. Tillage effects on soil degradation, soil resilience, soil quality and sustainability. Soil and Tillage Research 51: 61-70.
Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627.
Lal, R., 2007. Anthropogenic influences on world soils and implications to global food security. In: Sparks, D.L. (Ed.), Advances in Agronomy 93: 69–93.
Lal, R., 2010. Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestra­tion. Crop Science 50: S120–S131.
Lal, R., Kimble, J.M., Follett, R.F., and Stewart, B.A., 1997. Soil Processes and Carbon Cycles. CRC Press, Boca Raton, F.L., Campbell, C.A., Mc Conkey, B.G., Zentner, R.P., Selles, F., and Curtin, D., 1996. Tillage and crop rotation effects on soil organic C and N in a coarse-textured Typic Haploboroll in Southwestern Saskatchewan. Soil and Tillage Research 37: 3–14.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., and Rossi, J.P., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42: S3–S15.
Liang, Y., Yang, Y., Yang, C., Shen, Q., Zhou, J., and Yang, L., 2003. Soil enzymatic activity and growth rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 115: 149-160.
Lin, B.B., 2011. Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience 61(3): 183-193.
Liu, E., Yan, C., Mei, X., He, W., Bing, S.H., Ding, L., Liu, Q., Liu, S., and Fan, T., 2010. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 158: 173-180.
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002. Soil fertility and biodiversity in organic farming. Science 296(5573): 1694.
Mahmood, T., Azam, F., Hussain, F., and Malik, K.A., 1997. Carbon availability and microbial biomass in soil under an irrigated wheat maize cropping systems receiving different fertilizer treatments. Biology and Fertility of Soils 25: 63-68.
MAJ (Ministry of Agriculture of the IR of Iran). 2012. Planning and Economics Department, Statistics Bank of Iranian Agriculture; http://www.maj.ir; 2012 (Accessed August 2014). (In Persian)
Maraseni, T.N., and Cockfield, G., 2011. Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia. Agricultural Systems 104: 451–458.
Marschner, P., Kandeler, E., Marschner, B., and Patra, A.K., 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry 35: 453–461.
Mc Lean, E.D., 1982. Soil pH and lime requirement, In: Methods of Soil Analysis, Part II: Chemical and Microbiological Properties. 2nd Ed. Agronomy 9(1). A. S. A. Inc., S. S. S. A. Inc., Madison Publisher, Wisconsin, USA. P.199-209.
Miransari, M., and Smith, D., 2009. Alleviating salt stress on soybean (Glycine max (L.) Merr.) Bradyrhizobiumjaponicum symbiosis, using signal molecule genistein. European Journal of Soil Biology 45: 146–152.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S., 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724–733.
Mohammadi, K., Nabi Allahi, K., Aghaalikhani, M., and Khormali, F., 2009. Study on the effect of different tillage methods on the soil physical properties, yield and yield components of rainfed wheat. Journal of Plant Production 16(4): 77-91. (In Persian with English Summary)
Moscatelli, M.C., Di Tizio, A., Marinari, S., and Grego, S., 2007. Microbial indicators related to soil carbon in mediterranean land use systems. Soil and Tillage Research 97(1): 51–59.
Mrabet, R., 2001. Le Système de semis direct: Pour une agriculture Marocaine durable et respectueuse de l’environnement. In: Séminaire sur les aléas climatiques et politiques agricoles. Association Marocaine de l’Agro-Economie, Rabat, Maroc, 24–25 Mai 2001, p. 337–348.
Namazi, S., Raiesi, F., and Ghorbani, S., 2012. The interactive effects of crude oil and N forms on C mineralization and microbial biomass of a clay soil. Journal of Environmental Studies 38(3): 1-16. (In Persian with English Summary)
Noorbakhsh, F., Hajrasuliha, S., and Emtiazy, G., 2001. Factors affecting, urease enzyme activity in some soils in Isfahan province. JWSS- Isfahan University of Technology 5(3): 95-106. (In Persian with English Summary)
Ozpinar, S., and Baytekin, H., 2006. Effects of tillage on biomass, roots, N accumulation of vetch (Vicia sativa L.) on a clay loam soil in semi-arid conditions. Field Crops Research 96: 235–242.        
Pimentel, D., Hepperly, P., Hanson, J., Douds, D., and Seidel, R., 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 55(7): 573-582.
Post, W.M., and Kwon, K.C., 2000. Soil carbon sequestration and land-use change, processes and potential. Global Change Biology 6(3): 317-327.
Raiesi, F., and Ghollarata, M., 2006. Interactions between phosphorous availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50: 413-425.
Rajabi, M.H., Soltani, A., Zeinali, E., and Soltani, E., 2012. Evaluation of greenhouse gas emission and global warming potential in wheat production in Gorgan, Iran. Electronic Journal of Crop Production 5(3): 23-44.
Rashidi, M., and Keshavarzpour, F., 2007. Effect of different tillage methods on grain yield and yield components of maize (Zea mays L.). International Journal of Agriculture and Biology 9: 274-277.
Rashidi, M., and Keshavarzpour, F., 2008. Effect of different tillage methods on soil physical properties and crop yield of melon (Cucumis melo). American-Eurasian Journal of Agricultural and Environmental Sciences 3: 31-36.
Rashidi, M., Keshavarzpour, F., and Gholami, M., 2008. Effect of different tillage methods on yield and yield components of forage corn. American-Eurasian Journal of Agricultural and Environmental Sciences 3: 347–351.
Rashidi, Z., Zare, M.J., Rejali, F., and Ashraf Mehrabi, A., 2011. Effect of soil tillage and integrated chemical fertilizer and biofertilizer on quantity and quality yield of bread wheat and soil biological activity under dry land farming. Iranian Journal of Crop Production 4(2): 189-206. (In Persian with English Summary)
Reganold, J.P., Andrews, P.K., Reeve, J.R., Carpenter-Boggs, L., Schadt, C.W., Alldredge, J.R., Ross, C.F., Davies, N.M., Zhou, J., and El-Shemy, A.H., 2010. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLOS|ONE 5(9): e12346.
Rezvani Moghaddam, P., Khorramdel, S., and Mollafilabi, A., 2015. Evaluation of soil physical and chemical characteristics impacts on morphological criteria and yield of saffron (Crocus sativus L.). Journal of Saffron Research in Press. (In Persian with English Summary)
Rodhe, H., 1990. A comparison of the contribution of various gases to the greenhouse. Science 248: 1217–1219.
Ros, M., Hernandez, M.T., and Garcia, C., 2003. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology and Biochemistry Journal 35: 463-469.
Saha, S., Mina, B.L., Gopinath, K.A., Kundu, S., and Gupta, H.S., 2008. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bioresource Technology Journal 99: 1750-1757.
Schahczenski, J., and Hill, H., 2009. Agriculture, Climate Change and Carbon Sequestration. ATTRA Publications. pp. 16.
Scialabba, N., and Müller-Lindenlauf, M., 2010. Organic agriculture and climate change. Renewable Agriculture and Food Systems 25: 158–169.
Shaver, T.M., Peterson, G.A., Ahuja, L.R., Westfall, D.G., Sherrod, L.A., and Dunn, G., 2002. Surface soil physical properties after twelve years of dry land no-till management. Soil Science Society of America Journal 66: 1296–1303.
Shirani, H., Hajabbasi, M.A., Afyuni, M., and Hemmat, A., 2002. Effects of farmyard manure and tillage systems on soil physical properties and corn yield in central Iran. Soil and Tillage Research 68: 101–108.
Six, J., Elliott, E.T., and Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry 32: 2099-2103.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E., 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133: 247-266.
Souvannavong, V., Lemaire, C., De Nay, D., Brown, S., and Adam, A., 1995. Expression of alkaline phosphatase by a B-cell hybridoma and its modulation during cell growth and apoptosis. Immunology Letters 47: 163-170.
Su, Y.Z., 2007. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China. Soil and Tillage Research 92(1-2): 181-189.
Tabatabai, M.A., 2003. Enzymes: Past, present and future. Second international conference on enzyme in the environment: Activity, Ecology and Application. Prague, Czech Republic p. 14-17.
Tengo, M., and Belfrage, K., 2004. Local management practices for dealing with change and uncertainty: A cross-scale comparison of cases in Sweden and Tanzania. Ecology and Society 9(3): 4.
Thelen, K.D., Fronning, B.E., Kravchenko, A., Min, D.H., and Robertson, G.P., 2010. Integrating livestock manure with a corn–soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential. Biomass and Bioenergy 34: 960–966.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418(6898): 671-677.
 Tisdale, S.L., and Nelson, W.L., 1993. Soil Fertility and Fertilizers. Technology and Engineering 634 pp.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K., 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agriculture systems 85: 101-119.
Van Wie, J.B., Adama, J.C., and Ullman, J.L., 2013. Conservation tillage in dryland agriculture impacts watershed hydrology. Journal of Hydrology 483: 26-38.
Verbruggen, E., Roling, W.F.M., Gamper, H., Kowalchuk, G.A., Verhoef, H.A., and Van Der Heijden, M.G.A., 2010. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist 186(4): 968-979.
Verge, X.P.C., Kimpe, C.D., and Desjardins, R.L., 2007. Agricultural production, greenhouse gas emissions and mitigation potential. Agricultural and Forest Meteorology 142: 255–269.
Walkley, A., and Black, I., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science Society of American Journal 37: 29-38.
Weil, R.R., and Magdoff, F., 2004. Significance of soil organic matter to soil quality and health. pp. 1-42. In: F. Magdoff and R.R. Weil, editors. Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, Florida, USA.
Witter, E., and Kanal, A., 1998. Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input. Applied Soil Ecology 10: 37-49.
Yao, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., Zhu, J., and Yin, R., 2009. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry 41: 2131–2140.
Yousefi, M., Khoramivafa, M., and Mondani, F., 2014 a. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment 92: 501-505.
Yousefi, M., Mahdavi Damghani, A.M., and Khoramivafa, M., 2014 b. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment 493: 330–335.
Zan, C.S., Fyles, J.W., Girouard, P., and Samson, R.A., 2001. Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agriculture, Ecosystems, and Environment 89(2): 135-144.
Zarea, M.J., Ghalavand, A., Mohammadi Goltapeh, E., and Rejali, F., 2008. Influence of forage legumes mixed cropping on biomass yield, soil microbial biomass and nitrogenase activity. Green Farm Journal 1(6): 12–15
Zhang, M.Y., Wang, F.J., Chen, F., Malemela, M.P., Zhang, H.L., 2013. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production 54: 101-107.
Zhang, Y., Li, Z., Feng, J., Zhang, X., Jiang, Y., Mingqian, J.C., Deng, A., and Zhang, W., 2014. Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas. Atmospheric Environment 96: 220-228.