تعیین خلأ عملکرد سیب‌زمینی (Solanum tuberosum L.) در استان گلستان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان، ایران.

2 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

چکیده

تحلیل خلأ عملکرد یک روش کمّی برای افزایش احتمالی ظرفیت تولید گیاهان زراعی در یک ناحیه مشخص می‌باشد و یکی از مهم‌ترین بخش­های طراحی راهبردهای تأمین غذا در مقیاس منطقه­ای، ملی و جهانی است. در این راستا، با استفاده از مدل شبیه‏سازی SSM-iCrop2 مقدار عملکرد پتانسیل سیب‌زمینی (Solanum tuberosum L.) برآورد شد و سپس با استفاده از نرم‌افزار GIS و به‌کمک دو روش گیگا و درون‌یابی مقادیر عملکرد پتانسیل، عملکرد واقعی، خلأ عملکرد برای استان گلستان محاسبه گردید. نتایج نشان داد که عملکرد واقعی استان گلستان (میانگین 10 ساله مورد بررسی) براساس گزارش جهاد کشاورزی معادل 22 تن در هکتار می­باشد. همچنین عملکرد واقعی محاسبه شده براساس روش گیگا معادل 20 تن در هکتار و براساس روش درون‌یابی نیز 22 تن در هکتار به‌دست آمد. حداکثر عملکرد غده گزارش شده توسط کشاورزان 55 تن بوده است که بر این اساس مقدار عملکرد پتانسیل شبیه‌سازی شده ارزیابی گردید. در روش گیگا 52 تن در هکتار و در روش درون‌یابی 42 تن در هکتار به‌دست آمد. که این امر نشان ار دقت بالای روش گیگا در تخمین عملکرد پتانسیل دارد. مقدار خلأ عملکرد و عملکرد نسبی مشاهده شده برابر با 33 تن در هکتار و 40 درصد، برای روش گیگا معادل 33 تن در هکتار و 38 درصد و در روش درون‌یابی برابر با20 تن در هکتار و 52 درصد به‌دست آمد. با مقایسه دو روش درون‌یابی و گیگا، می­توان نتیجه گرفت هر دو روش، تخمین نسبتاً خوبی از مقدار عملکرد واقعی داشتند، ولی روش گیگا عملکرد پتانسیل را بهتر از روش درون‌یابی پیش‌بینی کرد. براساس داده­های مورد نیاز اجرای مدل در سطح ملی، قابلیت مقایسه نتایج با تحقیقات صورت گرفته در اقلیم­های مشابه در سراسر دنیا، تخمین عملکرد پتانسیل براساس مناطق عمده کاشت محصولات، روش گیگا به­عنوان روش برتر می­تواند برای تخمین خلأ عملکرد در سطح کشور و برای سایر محصولات نیز مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Potato (Solanum tuberosum L.) Yield Gap in Golestan Province

نویسندگان [English]

  • Amir dadrasi 1
  • Benjamin Torabi 2
  • Asghar Rahimi 1
  • Afshin Soltani 2
  • Ebrahim Zeinali 2
1 Department of Genetic and Plant Production, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanajn, Rafsanjan, Iran
2 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran.
چکیده [English]

Introduction
Potato (Solanum tuberosum L.) accounts for the largest share in production of food products after wheat, rice and corn, which plays an important role in the nutrition and food basket of the world. Currently, the issue of food security and supplying is very important in different parts of the world and thus prediction of its demand that is increasing. Also, growing population will intensify this issue too. A key strategy to overcome the nutritional challenge of the growing population of the world is eliminating the gap between the current achievement in farms and the yield which can be achieved by using the best cultivars compatible with the environment and the best water, soil and plant management methods.
Martials and Methods
In this study, potential yield of potato was estimated using the SSM-iCrop2. then the production and yield gap of potato were investigated with two methods of Global Yield Gap Atlas (GYGA) and Arc GIS software by interpolation method for Golestan province. For this aim, the information of potato cultivation management in the province level and the daily data of 23 synoptic weather station as well as their soil data were used. Meanwhile, potential yield gap analysis protocol (GYGA protocol) was used to identify the main weather stations named reference weather stations (RWSs) and climates where potato is planted in Golestan province. Potential yield of potato was estimated within the area covered by each RWS, and then scaled up to the province level. In order to implement the interpolation method in ArcGIS software, initially, potential yield of 23 stations in the Golestan province was estimated. Afterwards, the potential and actual yield in the whole province was estimated using Kriging and IDW methods, respectively.
Results and Discussions
According to the Agricultural Jihad Report, the actual yield of Golestan province (a ten-year average) was reported as 22 t.ha-1, while the actual yield calculated based on the interpolation method was estimated equal to 22 t.ha-1. However, the actual yield calculated using the global yield gap atlas (GYGA) method was estimated as 20 t.ha-1. Heigh yield of potato in the province was reported by farmers up to 55 tons, which was considered as potential in the province to be compared with GYGA and interpolation methods, so that in the GYGA method, 52 t.ha-1 and in the interpolation method, finding was 42 t.ha-1. yield gap and relative yield in the GYGA method (33 t.ha-1 and 38 percent), and interpolation (20 t.ha-1 and 52 percent) were obtained. Also, in GYGA method, the values ​​were estimated using only two stations, but in the interpolation method the province's yield was estimated using 23 stations and daily meteorological data. The GYGA protocol is a bottom-up approach used by Hochman et al. (2016) to assess the variation of national yield from climatic zoning to analyze similar agro-cluster groups. So far, several studies have been done using this protocol. Gobbett et al. (2017) showed that wheat lands in Australia are located in six key climatic regions. They selected 22 reference stations in this area and calculated the limited water potential yield using the APSIM model (for the years of 1996 to 2010).
Conclusion
The results showed that both Global yield gap Atlas (GYGA) and interpolation method had accurate estimation of actual and potential production and yield, but those values obtained using statistics and 23 weather stations in the interpolation method, and using just 2 weather station (Hashemabad and Gorgan stations) in the Global Atlas method. As previously mentioned, the GYGA method is designed to estimate the yield gap at the national level, which can calculate the potential yield, production, and yield gap in a wide range even with the least amount of information. One of the advantages of GYGA protocol is that the results obtained at any point in the world are comparable to other areas and cultivations of that particular product. Based on the comparison made in this study, it was concluded that the Global yield gap Atlas method should be used to estimate the yield of the country.

کلیدواژه‌ها [English]

  • Food security
  • Geographic Information System (GIS)
  • Potential yield
Aboutalebian, M.A., and Mazaheri, D., 2011. The combined effect of soil cover on weed control and yield of potato yield. Iranian Journal of Field Crop Science 43: 255-264. (In Persian with English Summary)
Ahmadi Alipour, H., Soltani, A., Kazemi, H., and Nehbandani, A.R., 2018. Zoning Golestan province in terms of the ability and the wheat production gap using a simulation model (SSM). Journal of Agricultural Crops Production 20(1): 129-145. (In Persian with English Summary)
Ahmadvand, G., and Haji-Nia, S., 2015. Effect of cover plant and different tillage systems on physical properties of soil and yield of potato. Electronic Journal of Crop Production 8: 163-182. (In Persian with English Summary)
Amini, R.A., Daba-Khonmohamadi-Nasab, A., and Ghorbani-Far, S., 2015. Use of physical, agronomic and chemical methods in the management of potato weed. Journal of Agricultural Science and Sustainable Production 25(4): 105-118. (In Persian with English Summary)
Baghani, j., Alizadeh, A., and Farid-hosseini, A., 2012. The effect of surface and subsurface drip irrigation on quantity and quality potato. Iranian Journal of Irrigation Draining 3(6): 238-244. (In Persian)
Bagheri, H.R., 2016. Agro-ecological zonation and vacuum analysis of potato yield using the SUBSTOR-Potato simulation model and GIS in Chaharmahal va Bakhtiari province, Ph.D. Dissertation, Faculty of Agriculture, Agricultural Sciencesand Natural Resources University of Ramin Khuzestan. Iran. (In Persian)
Bagheri, H.R., Gharineh, M.H., Bakhshandeh, A.M., Taei, J., Mehnatkesh, A.M., and Andarzyan, B., 2016. Effect of water stress and different levels of nitrogen fertilizer on yield and yield components and potato (Solanum tuberosum L.) water use efficiency. Journal of Environmental Stresses in Agricultural Sciences 9(1): 1-14. (In Persian)
Batjes, N.H., 2000. Global Soil Profile Data (ISRIC-WISE). ORNL DAAC.
Bommarco, R., Kleijn, D., and Potts, S.G., 2013. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology and Evolution 28: 230-238.
Cassman, K.G., Grassini, P., and van Wart, J., 2010. Crop Yield Potential, Yield Trends, and Global Food Security in a Changing Climate. Handbook of Climate Change and Agroecosystems. Imperial College Press, London. p. 37-51.
Food and Agriculture Organization (FAO)., 2014. The FAOSTAT Database. Available at http://faostat.fao.org/default.aspx (verified 5 September 2014).
Gobbett, D.L., Hochman, Z., Horan, H., Garcia, J.N., Grassini, P., and Cassman, K.G., 2017. Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science 155: 282-299.
Haghighati, B., BromandNasab, S., and Naseri, A., 2016. Effect of deficit irrigation and partial root- zone drying on yield and water use efficiency of two potato cultivars. Journal of Water Soil 30(3): 717-729.  (In Persian with English Summary)
 Hajjarpoor, A., Soltani, A., and Torabi, B., 2016. Using boundary line analysis in yield gap studies: Case study of wheat in Gorgan. Electronic Electronic Journal of Crop Production 8: 183-201. (In Persian with English abstract)
Hochman, Z., Gobbett, D., Horan, H., and Garcia, J.N., 2016. Data rich yield gap analysis of wheat in Australia. Field Crops Research 197: 97-106.
Hossein-Panahi, F., Koocheki, A., Nassiri, M., and Ghorbani, R., 2009. Evaluation of yield and yield component in potato/corn intercropping. Iranian Journal of Field Crop Research 7(1): 23-30. (In Persian with English Summary)
Jalali, A.H., and Salehi, F., 2015. The effect of nitrogen application and its split on yield, dry matter percentage and potato harvest index of Marfona cultivar. Journal of Crop Production and Processing 15: 83-91. (In Persian with English Summary)
Jalali, A.H., and Jafari, P., 2018. Calculating yield gap and increasing water productivity in potato. In: 7th National Conference on New Idea in Agriculture (Healthy Production). 6 March. Islamic Azad University of Khorasgan Branch. Esfahan. Iran. (In Persian)
Jam, E., Ebadi, A., Amini, I., and Dehdar, B., 2015. Effect of planting density and seed-mini tuber size on some quantitative and qualitative traits of potato. Agronomy Journal 81: 20-29. (In Persian with English Summary)
Kazemi, H., 2017. Application of Geographic Information System (GIS) in Crop Sciences. Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Persian with English Summary)
Kiniry, J.R., Williams, J.R., Gassman, P.W., and Debaeke, P., 1992. A general, process-oriented model for two competing plant species. Transactions of the ASAE 35: 801-810.
Lobell, D.B., Cassman, K.G., and Field, C.B., 2009. Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34: 179-204.
Madani, H., Moghimi, A., and Sajedi, N.A., 2010. Effect of different levels of zeolite and irrigation interval on yield and some potato traits. New Finding in Agriculture 3: 281-290. (In Persian)
Mamnoei, E., Karaminezhad, M.R., Rashed Mohasel, M.H., Shimi, P., and Aein, A., 2016. Evaluation of some herbicides on potato weed control in Jiroft and Karaj. Journal of Plant Protection 30(3): 368-378. (In Persian with English Summary)
Masoudi, F., Zardashti, M.R., Abdollahi M., oulakani, B., Rasoli Sadghiani, M.H., and Nazarli. H., 2010. Effect of irrigation intervals on yield and plant characteristics of potato (Solanum tuberosum L.). Iranian Journal of Field Crop Science 12(3): 265-278. (In Persian with English Summary)
Meghdadi, N., Soltani, A., Kamkar B., and Hajarpoor, A., 2014. Agroecological zoning of Zanjan province for estimating yield potential and yield gap in dryland-base chickpea production systems. Journal Plant Production Research 21: 27-49. (In Persian with English Summary)
Naderi, M., Shayannejad, M., Haidari, S., and Haghighati, B., 2016. Effect of different levels of irrigation water on quantitative and qualitative characteristics of potato and determination of its optimum consumptive use of water in Shahr-e-Kord. Journal of Water and Soil 30(5): 1370-1381. (In Persian Persian with English Summary)
Nasrollahzadeh-Asl, A., and Sedaqat, G., 2015. Effects of planting depth and irrigation disruption on yield and yield components in potato (Solanum tuberosum L). Journal of Crop Science and Research in Arid Regions 2(1): 31-42. (In Persian)
Nehbandani, A.R., 2018. Yield gap analysis of soybean in Iran, Ph.D. Dissertation, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Neutral Resources, Iran. (In Persian with English Summary)
Nehbandani, A.R., Soltani, A., Zeinali, E., Hoseini, F., Shahhoseini, A., and Mehmandoei, M., 2017. Soybean (Glycine max L. Merr.) yield gap analysis using boundary line method in Gorgan and Aliabad Katul. Journal of Agroecology 9: 760-776. (In Persian with English Summary)
Nikzad, M., Taei, J., Azamisardoei, Z.A., and Amiri, E., 2015. Agro-ecological zonation of potato using GIS and WOFOST simulation model in Jiroft city. MSc. Thesis, Faculty of Agriculture, Jiroft University, Kerman, Iran. (In Persian with English Summary)
Parvizi, K., 2008. Evaluation of quantitative and qualitative traits of late and early ripening advanced potato cultivars. Agronomy Journal 79: 80-90. (In Persian with English Summary)
Ranjbar, M., Nasresfahani, M., and Mirzakhani, M., 2013. The study of growth indices of commercial and conventional potato cultivars in Esfahan region. Iranian Journal of Dynamic in Agriculture 1(4): 295-304. (In Persian)
Rostami-Ajirloo, A., Mohamadi, G., and Shaban, M., 2012. Effect of nitrogen biofertilizers with urea fertilizer on some quantitive and qualitative traits of potato var. Marphona. Electronic Journal of Crop Production 5(3): 131-144. (In Persian with English Summary)
Sabbah, A., and Ghaffari-Nejad, S.A., 2008. Determination of the best water level as trickle, irrigation and method of tape replacement on potato yield in Jiroft area. Agronmy Journal 79: 194-199. (In Persian with English Summary)
Soltani, A., Khooie, F.R., Ghassemi-Golezani, K., Rahimzadeh-Khooie, F., and Moghaddam, M., 1999. A simple model for chickpea growth and yield. Field Crops Research 6: 213-224.
Soltani, A., Galeshi, S., and Zeinali, E., 2000. Analysis of limitations contained in wheat production in Golestan province (Research Report). Management and Planning Organization of Golestan province, Golestan, Iran. (In Persian).
Sinclair, T.R., 2006. A reminder of the limitations in using Beer's law to estimate daily radiation interception by vegetation. Crop science 46: 2343-2347.
Soltani, A., Torabi, B., Galeshi, S., and Zeinali, E., 2009. Analyzing wheat yield constraints in Gorgan with Comparative Performance Analysis (CPA) method. (Research Report). Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. 65 p. (In Persian with English abstract)
Soltani, A., and Sinclair, T.R., 2011. A simple model for chickpea development, growth and yield. Field Crops Research 124: 252-260.
Soltani, A., Maddah, V., and Sinclair, T.R., 2013. SSM-Wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production 7: 711-740.
Soltani, A., Hajjarpour, A. and Vadez, V., 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research 185: 21-30.
Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E., 2011. Assessment of yield gap due to nitrogen management in wheat. Australian Journal of Crop Science 5: 879.
Van Bussel, L.G., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., and van Ittersum, M.K., 2015. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Research 177: 98-108.
Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., and Hochman, Z., 2013. Yield gap analysis with local to global relevance-A review. Field Crops Research 143: 4-17.
Van Wart, J., Van Bussel, L.G., Wolf, J., Licker, R., Grassini, P., Nelson, A., and van Ittersum, M.K., 2013. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Research 143: 44-55.
Van Ittersum, M.K., and Cassman, K.G., 2013. Yield gap analysis-Rationale, methods and applications-Introduction to the Special Issue. Field Crops Research 3: 143:1-3.
Wang, N., Jassogne, L., Van Asten, P.J., Mukasa, D., Wanyama, I., Kagezi, G., and Giller, K.E., 2015. Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy 63: 1-11.
Williamson, R.B. 1993. Urban Runoff Data Book: A Manual for the Preliminary Evaluation of Urban Stormwater Impacts on Water Quality. Water Quality Centre, Ecosystems Division, National Institute of Water and Atmospheric Research.
Yazdandoust-amedani, M., 2003. A study of the effect of nitrogen rates on yield, yield components and nitrate accumulation in potato varieties. Iranian Journal of Field Crop Science 34: 977-985. (In Persian with English Summary)
Zu, Q., Mi, C., Li Liu, D., He, L., Kuang, Z., Fang, Q., and Li, J., 2018. Spatio-temporal distribution of sugarcane potential yields and yield gaps in Southern China. European Journal of Agronomy 92: 72-83.