بهینه‌سازی آبیاری و تراکم کاشت ذرت (.Zea mays L) به‌کمک روش سطح-پاسخ

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 گروه اگروتکنولوژی ، دانشکده کشاورزی، دانشگاه فردوسی مشهد

چکیده

با افزایش کارایی مصرف آب از طریق عملیات مدیریتی نظیر تراکم مناسب کاشت و میزان آبیاری می­توان در مناطق خشک و نیمه‌خشک عملکرد محصول را افزایش داد. به همین منظور آزمایشی در سال زراعی 1394 به‌روش سطح- پاسخ (RSM) در قالب طرح مرکب مرکزی با دو تکرار روی گیاه ذرت (.Zea mays L) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد انجام شد. تیمارهای آزمایش با توجه به سطوح بالا و پایین حجم آبیاری (6000 و 14000 مترمکعب در هکتار) و تراکم کاشت (پنج و نه بوته در مترمربع) طراحی شدند. عملکرد دانه، عملکرد بیولوژیک و کارایی مصرف آب به‌عنوان متغیرهای وابسته مورد ارزیابی قرار گرفتند و با استفاده از مدل رگرسیونی درجه دو کامل واکنش این صفات به متغیرهای مستقل (تراکم و آبیاری) محاسبه شدند. سپس مقدار مصرف آب و تراکم ذرت بر اساس سه سناریوی اقتصادی، زیست‌محیطی و اقتصادی-زیست‌محیطی بهینه­سازی شدند. در سناریوی اقتصادی با در نظر گرفتن هشت بوته در مترمربع و آبیاری 14000 مترمکعب در هکتار بیشترین میزان عملکرد اقتصادی با 8/1345 گرم در مترمربع به‌دست آمد که در این شرایط عملکرد بیولوژیک و کارایی مصرف آب به‌ترتیب 7/4534 گرم در مترمربع و 98/0 کیلوگرم به‌ازای هر مترمکعب آب بود. در سناریوی زیست‌محیطی نیز از انتخاب تراکم هفت بوته در مترمربع و آبیاری 7939 مترمکعب در هکتار بیشترین میزان کارایی مصرف آب (kg.m-3 21/1) حاصل شد که تحت این شرایط عملکرد دانه 6/988 گرم در مترمربع بود. بر اساس سناریوی اقتصادی-زیست­محیطی، با انتخاب تراکم 5/7 بوته در مترمربع و آبیاری معادل 10848 مترمکعب در هکتار، بیشترین میزان عملکرد دانه و کارایی مصرف آب به‌ترتیب با 7/1240 گرم در مترمربع و 16/1 کیلوگرم به‌ازای هر مترمکعب آب به‌دست آمد. بنابراین، به‌طورکلی مصرف آب و انتخاب تراکم بر اساس سناریوی تلفیقی به‌دلیل در نظر گرفتن توأم مسائل اقتصادی و زیست‌محیطی نسبت به سناریوهای دیگر برتری دارد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Irrigation and Plant Density of Corn (Zea mays L.) by Using Response-Surface Methodology

نویسندگان [English]

  • Alireza Koocheki 1
  • Mehdi Nassiri Mahallati 2
  • Ali Momen 1
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
2 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Introduction[1]  
Water and plant density have a complex interaction. Determination of optimum density is an effective strategy to improve the efficiency of available resources usage and to increase the yield per unit area. Despite extensive research on the effects of different levels of irrigation and plant density for different crops, including corn, information on the optimization of these resources, using response-surface methodology (RSM) is scarce. Therefore, the objective of this study was to determine the optimal level of irrigation and plant density in corn production based on central composite design (CCD).
Materials and Methods
 An experiment was conducted by using response-surface methodology with the central composite design and two replications on corn at the Research Farm of Ferdowsi University of Mashhad, during the 2015 growing season. The experimental treatments were the highest and lowest levels of irrigation volume (6000 and 14000 m-3.ha-1) and plant density (5 and 9 plants.m-2). Grain yield (GY), biological yield (BY) and water use efficiency (WUE) were measured as response variables in a full quadratic polynomial model. Consumption rate of irrigation and density were optimized based on three scenarios: economic, environmental and eco-environmental. Grain yield of corn and WUE were considered as the main factors to determine the optimum level of treatments under the economical and environmental scenarios, respectively. In the eco-environmental scenario, the main factor was WUE and grain yield.
Results and Discussion
The results indicated that at low level of irrigation (6000 m3.ha-1) plant density and grain yield correlated with others as quadratic so that by increasing the density from 5 to 7 plants.m-2,grain yield first increased and then decreased with enhancing density to 9 plants.m-2.It seems that at low levels of irrigation, reduction and enhancement of plant density, respectively, as a result of increasing evaporation from soil surface and increasing competition in resource uptake (light and water) has reduced grain yield. Grain yield at high levels of irrigation showed a relatively linear relationship with incrementing plant density, and the highest grain yield with 1324.9 g.m-2was obtained from treatment of 14000 m3.ha-1 of water and density of 9 plants.m-2. Nevertheless, the results of model fitting showed that the highest grain yield with 1318.4 g.m-2 was attained from the density of 7 plants.m-2 and 14000 m3.ha-1 of water. Therefore, it seems that with the simultaneous enhancement in plant density and irrigation, vegetative growth due to lack of light has increased, as a result of grain yield than optimum densities (7 plants.m-2) has shown a decrease.
The regression model could significantly indicate that impact of independent variables on the grain yield, biological yield and water use efficiency (dependent variable). In economic scenario with considering 8 plants.m-2 and irrigation of 14000 m3.ha-1 the maximum of economical yield with 1345.8 g.m-2 was achieved in which biological yield and water use efficiency were 4534.7 gr.m-2 and 0.98 kg.m-3 of water, respectively. In environmental scenario also the choice of the density of 7 plants.m-2 and irrigation of 7939 m3.ha-1 the highest water use efficiency (1.21 kg.m-3) was attained in which grain yield that was 988.6 g.m-2. Based on eco-environmental scenario with choice of the density of 7.5 plants.m-2 and irrigation of 10848.5 m3.ha-1 the maximum grain yield and water use efficiency was obtained in 1240.7 g.m-2 and 1.16 kg.m-3 of water, respectively.
Conclusion
Due to lack of water resources and environmental problems caused by the excessive use of water, applying appropriate management practices such as proper planting density to optimize these resources is essential. The best way to achieve the highest economic yield and water use efficiency and, to reach sustainable agriculture is the choice of eco-environmental scenario in which by application of the density of 7.5 plants.m-2 and irrigation level of 10848.5 m3.ha-1 the maximum grain yield and water use efficiency with 1240.7 g.m-2 and 1.16 kg.m-3 of water was obtained, respectively.

کلیدواژه‌ها [English]

  • Central composite design
  • Eco-Environmental scenario
  • Economic yield
  • Water use efficiency
Al-Naggar, A.M.M., Shabana, R.A., Atta, M.M.M., and Al-khalil, T.H., 2015. Maize response to elevated plant density combined with lowered N-fertilizer rate is genotype-dependent. The Crop Journal 3: 96-109.
Aslan, N., 2007. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for chromite concentreation. Powder Technology 86: 769–776.
 Box, G.E.P., and Wilson, K.B., 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 13: 1–45.
Box, G.E.P., and Hunter, J.S., 1957. Multi-factor experimental designs for exploring response surfaces. The Institute of Mathematical Statistics p. 195-241.
Cox, W.J., 1996. Whole plant physiological and yield responses of maize to plant density. Agronomy Journal 88: 489-496.
Cox, W.J., and Cherney, J.R., 2001. Row spacing, plant density, and nitrogen effects on corn silage. Agronomy Journal 93: 597–602.
Darini, A., and Mazaheri, D., 2003. The effect of planting date and plant density on yield of corn (spring planting) in Jiroft. The Seventh Iranian Congress of Crop Sciense, Karaj, Irab. (In Persian)
Di Paolo, E., and Rinaldi, M., 2008. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Research 105: 202-210.
Domínguez, A., de Juan, J.A., Tarjuelo, J.M., Martínez, R.S., and Martínez-Romero, A., 2012. Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment. Agricultural Water Management 110: 67-77.
Earley, E., Rath, B., Sief, R.D., and Hageman, R.H., 2001. Effects of shade applied at different of plant development on corn production. Crop Science 7: 151-159.
El-Hendawy, S.E., El-Lattief, E.A.A., Ahmed, M.S., and Schmidhalter, U., 2008. Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn. Agricultural Water Management 95: 836-844.
Gheysari, M., Mirlatifi, S.M., Bannayan, M., Homaee, M., and Hoogenboom, G., 2009. Interaction of water and nitrogen on maize grown for silage. Agriculture and Water Management 96: 809-821.
González, H., 2010. Debates on food security and agrofood world governance. International Journal of Food Science and Technology 45(7): 1345–1352.
Heng, L.K., Hsiao, T., Evett, S., Howell, T., and Steduto, P., 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal 101: 488–498.
Heydaripour, R., Nassiri Mahallati, M., Koocheki, A., and Zarea Feyzabadi, A., 2014. The effects of different levels of irrigation and nitrogen fertilizer on productivity and efficiency in corn (Zea mays L.), sugar beet (Beta vulgaris L.) and sesame (Sesamum indicum L.) Journal of Agroecology 6(2): 187-198. (In Persian with English Summary)
Koocheki, A., Nassiri Mahallati, M., Fallahpour, F., and Amiri, M.B., 2016. Optimization of nitrogen fertilizer and irrigation in wheat cultivation by central composite design. Journal of Agroecology, In Press. (In Persian with English Summary)
Koocheki, A., Nassiri Mahallati, M., Moradi, R., and Mansoori, H., 2014. Optimizing water, nitrogen and crop density in canola cultivation using response surface methodology and central composite design. Soil Science and Plant Nutrition 60: 286-298.
Li, J., Xie, R.Z., Wang, K.R., Ming, B., Guo, Y.Q., Zhang, G.Q., and Li, S.K., 2015. Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal 107: 829-834.
Liu, W., Tollenaar, M., Stewart, G., and Deen, W., 2004. Response of corn grain yield to spatial and temporal variability in emergence. Crop Science 44: 847-854.
Mansouri, H., Banayan Aval, M., Rezvani Moghaddam, P., and Lakzian, A., 2014. Management of nitrogen, irrigation and planting density in Persian shallot (Allium hirtifolium) by using central composite optimizing method. Sustainable Agriculture and Production Science 24 (4.1): 41-60. (In Persian with English Summary)
Martín de Santa Olalla, F.J., Domínguez, A., Ortega, J.F., Artigao, A., and Fabeiro, C., 2007. Bayesian networks in planning a large aquifer in Eastern Mancha, Spain. Environmental Modelling and Software 22: 1089–1100.
Martínez-Valderrama, J., Ibánez, J., Alcalá, F.J., Domínguez, A., Yassin, M., and Puigdefábregas, J., 2011. The use of a hydrological-economic model to assess sustainability in groundwater-dependent agriculture in drylands. Journal of Hydrology 402: 80–91.
Nakhjavani Moghadam, M.M., Farhadi Oskouei, E., SadreQayan, S.H., and Najafi, E., 2013. The different levels of irrigation and plant density on yield and morphological traits Corn single cross-500 in Karaj. Iranian Journal of Field Crops Research 11(1): 13-22. (In Persian with English Summary)
Nassiri Mahallati, M., Koocheki, A., Amin Ghafouri, A., and Mahluji Rad, M., 2015. Optimizing corm size and density in saffron (Crocus sativus L.) cultivation by central composite design. Saffron Agronomy and Technology 3(3): 167-177.
Nyakudya, I.W., and Stroosnijder, L., 2014. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Water Management 146: 280-296.
Pinter, L., Alfoldi, Z., and Paldi, E., 1994. Feed value of forage maize hybrids varting in tolerance to plant density. Agronomy Journal 86: 799- 804.
Rockström, J., Karlberg, L., Wani, S.P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J., and Qiang, Z., 2010. Managing water in rainfed agriculture—the need for a paradigm shift. Agricultural Water Management 97: 543–550.
Rosenzweig, C., and Parry, M., 1994. Potential impact of climate change on world food supply. Nature 367: 133–138.
Sharratt, B.S., and McWilliams, D., 2005. Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agronomy Journal 97: 1129–1135.
Testa, G., Reyneri, A., and Blandino, M., 2016. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy 72: 28-37.
Tittonell, P., and Giller, K.E., 2013. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Research 143: 76–90.
Widdicombe, W.D., and Thelen, K.D., 2002. Row width and plant density effects on corn grain production in the northern corn belt. Agronomy Journal 94: 1020–1023.
Wu, C.F.J., and Hamada, M., 2000. Experiments: planning, analysis, and parameter design optimization. New York.
Wu, Y., Jia, Z., Ren, X., Zhang, Y., Chen, X., Bing, H., and Zhang, P., 2015. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agricultural Water Management 158: 1-9.