بررسی اثر تنش کم‌آبیاری و محلول‌پاشی 24-اپی‌براسینولید بر ویژگی‌های مورفولوژیک، اجزای عملکرد، عملکرد دانه و کارآیی مصرف آب در لوبیا چیتی (Phaseolus vulgaris L. cv. Pinto)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

2 گروه زراعت، دانشکده کشاورزی، دانشگاه تربیت‌ مدرس، تهران، ایران

چکیده

لوبیا چیتی (Phaseolus vulgaris L. cv. Pinto) به‌عنوان یکی از حبوبات مهم در تأمین پروتئین گیاهی، در شرایط کم‌آبیاری دچار کاهش عملکرد می‌شود که بررسی راهکارهای هورمونی می‌تواند در کاهش اثرات تنش مؤثر باشد. به‌منظور بررسی اثر محلول‌پاشی 24-اپی‌براسینولید بر صفات مورفولوزیک و زراعی لوبیا چیتی، آزمایش کرت‌های خرد‌شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال 1401 در مزرعه تحقیقاتی دانشگاه یاسوج اجرا شد. سه سطح مختلف تیمار آبیاری شامل آبیاری کامل (100 درصد نیاز آبی)، تنش متوسط (80 درصد نیاز آبی) و تنش شدید (60 درصد نیاز آبی براساس تشتک تبخیر کلاس A) به‌عنوان عامل اصلی و چهار سطح محلول‌پاشی 24-اپی‌براسینولید (شاهد (آب مقطر)، 05/0، 1/0 و 2/0 میلی‌گرم بر لیتر) به‌عنوان عامل فرعی بودند. آبیاری 60 درصد موجب کاهش 26/47 و 19/19 درصد شاخص سطح برگ و ارتفاع شد. اثر ساده محلول‌پاشی 2/0 میلی‌گرم بر لیتر 24-اپی‌براسینولید نیز موجب افزایش 86/14 و 80/22 درصدی این صفات نسبت به شاهد شد. تعداد غلاف در بوته، تعداد دانه در غلاف و وزن صد دانه متأثر از تنش شدید با کاهش 42/21، 56/27 و 69/12 درصدی همراه شدند. در نقطه مقابل، کاربرد مجزای بالاترین سطح محلول‌پاشی، میزان این صفات را به‌ترتیب 105، 56/61 و 54/26 درصد نسبت به شاهد بهبود بخشید. در سطح تنش شدید، محلول‌پاشی 2/0 میلی‌گرم بر لیتر عامل افزایش 34/44، 78/39 و 29/7 درصدی عملکرد دانه، عملکرد زیستی و شاخص برداشت شد. به‌طور کلی، در این آزمایش محلول‌پاشی 2/0 میلی‌گرم بر لیتر 24-اپی‌براسینولید اثرات منفی تنش کم‌آبی را بر ریخت‌شناسی و عملکرد لوبیا چیتی کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Water Deficit Stress and Exogenous 24-Epibrassinolide Foliar Application on Morphological Traits, Yield Components, Grain Yield, and Water Use Efficiency in Pinto Beans (Phaseolus vulgaris L. cv. Pinto)

نویسندگان [English]

  • Sulmaz Samfar 1
  • Hojatollah Latifmanesh 1
  • Ali Moradi 1
  • Amin Mirshekari 1
  • Hamid Alahdadi 1
  • Azar Razaghnasab 2
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran
2 Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Introduction
Pinto bean (Phaseolus vulgaris L. cv. Pinto) is one of the most important legume crops within the Fabaceae family, cultivated extensively in tropical and subtropical regions. Despite its sensitivity to drought, this species plays a crucial role in food security and sustainable agriculture due to its rich composition of high-quality protein, complex carbohydrates, and essential micronutrients. However, drought stress represents a major abiotic constraint that significantly impairs crop performance by reducing stomatal conductance, decreasing chlorophyll content, disrupting photosynthesis, and limiting root and shoot development. To address this challenge, regulated deficit irrigation has emerged as an efficient strategy for optimizing water use while maintaining acceptable yield levels. Moreover, the application of plant growth regulators such as brassinosteroids, bioactive, eco-friendly, and steroidal compounds, has been recognized as a promising approach to enhancing plant tolerance to abiotic stress. These compounds contribute to stress mitigation by enhancing photosynthetic efficiency, stimulating the biosynthesis of vital metabolites, and activating enzymatic defence systems, thereby supporting plant growth and yield under water-limited conditions. Numerous studies have demonstrated that foliar application of brassinolide, particularly during sensitive developmental stages such as flowering, can substantially alleviate the adverse effects of drought and improve agronomic traits and seed yield. Consequently, the integration of deficit irrigation practices with exogenous brassinosteroid application represents a synergistic and effective approach for improving productivity and sustainability in pinto bean cultivation under arid and semi-arid climatic conditions.
 
Materials and Methods
To investigate the effects of foliar application of 24-epibrassinolide on morphological and agronomic traits of pinto bean (Phaseolus vulgaris L. cv. Pinto), a split-plot experiment was conducted in a randomized complete block design (RCBD) with three replications in 2022 at the Research Farm of Yasouj University. In this study, the main factor consisted of three irrigation levels based on Class A pan evaporation data: full irrigation (100% of crop water requirement), moderate drought stress (80%), and severe drought stress (60%). The sub-factor included four levels of 24-epibrassinolide foliar application: control (distilled water), 0.05, 0.1, and 0.2 mg.L⁻¹. The foliar treatments were applied to the aerial parts of the plants during both vegetative and reproductive growth stages. The objective of this research was to evaluate the interactive effects of drought stress and 24-epibrassinolide application on growth indices, yield components, and the adaptive responses of pinto bean under limited water availability.
 
Results and Discussion
The results demonstrated that severe drought stress (60% of crop water requirement) led to a significant reduction in morphological traits, with leaf area index and plant height decreasing by 47.26% and 19.19%, respectively. In contrast, foliar application of 0.2 mg L⁻¹ 24-epibrassinolide significantly improved these traits, resulting in increases of 14.86% and 22.80% compared to the control. Furthermore, yield components including the number of pods per plant, the number of seeds per pod, and hundred-seed weight were markedly reduced under severe drought by 21.42%, 27.56%, and 12.69%, respectively. However, application of the highest 24-epibrassinolide concentration substantially enhanced these parameters, with increases of 105%, 61.56%, and 26.54% relative to the untreated control. The interaction between irrigation and foliar treatment revealed that under severe drought conditions, the application of 0.2 mg L⁻¹ 24-epibrassinolide led to notable improvements in seed yield (44.34%), biological yield (39.78%), and harvest index (7.29%) compared to non-treated plants. Moreover, the highest water use efficiency was recorded under severe drought stress combined with this level of 24-epibrassinolide application, indicating the compound’s significant role in optimizing performance under limited water availability. These findings highlight the protective and stimulatory effects of brassinosteroids in enhancing the growth and productivity of pinto bean under drought stress conditions.
 
Conclusion
Overall, these findings indicate that foliar application of 0.2 mg L⁻¹ 24-epibrassinolide can serve as an effective strategy to enhance agronomic traits, seed yield, and water use efficiency of pinto bean under both full irrigation and deficit irrigation conditions. This underscores the critical role of this plant growth regulator in improving drought tolerance and sustaining economic yield under water-limited environments.
 
Acknowledgements
The authors gratefully acknowledge the Research and Technology Deputy of Yasouj University for financial support of this experiment.

کلیدواژه‌ها [English]

  • Biological yield
  • Harvest index
  • Leaf area index
  • Plant growth regulator

Authors retain the copyright.This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Ali, B., Hayat, S., & Ahmad, A. (2007). Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). Environmental and Experimental Botany, 59(2), 217–223. https://doi.org/10.1016/j.envexpbot.2005.12.002
  2. Anjum, S.A., Wang, L.C., Farooq, M., Hussain, M., Xue, L.L., & Zou, C.M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.x
  3. Ansari, W.A., Atri, N., Pandey, M., Singh, A.K., Singh, B., & Pandey, S. (2019). Influence of drought stress on morphological, physiological and biochemical attributes of plants: A review. Biosciences Biotechnology Research Asia, 16(4), 697–709. https://doi.org/http://dx.doi.org/10.13005/bbra/2785
  4. Bera, A.K., Pramanik, K., & Mandal, B. (2014). Response of biofertilizers and homobrassinolide on growth, yield and oil content of sunflower (Helianthus annuus). African Journal of Agricultural Research, 9(48), 3494–3503. https://doi.org/10.5897/AJAR2013.8457
  5. Castañeda-Murillo, C.C., Rojas-Ortiz, J.G., Sánchez-Reinoso, A.D., Chávez-Arias, C.C., & Restrepo-Díaz, H. (2022). Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon, 8(2). https://doi.org/10.1016/j.heliyon.2022.e08977
  6. Davoodi, S.H., Rahemi-Karizaki, A., Nakhzari-Moghadam, A., & Gholamalipour Alamdari, E. (2018). The effect of deficit irrigation on yield and physiological traits of bean cultivars. Plant Production Technology, 10(1), 83–95. (In Persian with English abstract). https://doi.org/22084/ppt.2018.9633.1537
  7. Davoodi, S., Rahemi-Karizaki, A., Nakhzari-Moghadam, A., & Gholamalipour Alamdari, E. (2017). Evaluation of response of yield, yield components and harvest index of bean (Phaseolus vulgaris) to terminal drought stress. Crop Science Research in Arid Regions, 1(2), 155–165. (In Persian with English abstract). https://doi.org/22034/csrar.01.02.03
  8. Davoudi, A., Sadeghipour, O., & Tohidi Moghadam, H.R. (2018). Cowpea response to ascorbic acid application under drought stress conditions. Journal of Crop Production Research, 10(3), 251–264. (In Persian with English abstract).
  9. Dehghan, M., Balouchi, H.R., Yadavi, A.R., & Safikhani, F. (2017). Effect of foliar application of brassinolide on grain yield and yield components of bread wheat (Triticum aestivum) cv. Sirvan under terminal drought stress conditions. Iranian Journal of Crop Science, 19(1), 40–56. (In Persian with English abstract).
  10. Eraji, R., Rezadoost, S., Jalili, F., Rushdi, M., & Khalili Mahalla, J. (2023). Effect of irrigation cut off and antitranspirants on yield and some physiological characteristics of pinto beans. Journal of Crop Production, 16(2), 149–168. (In Persian with English abstract). https://doi.org/10.22069/ejcp.2023.20745.2545
  11. Ghaedi, R., Razmjoo, J., & Gholami Zali, A. (2021). Effect of irrigation regimes on yield, yield components and seed quality of different pinto bean (Phaseolus vulgaris) genotypes. Journal of Crop Production and Processing, 11(2), 1–18. (In Persian with English abstract). https://doi.org/10.47176/jcpp.11.2.23942
  12. Ghafari, S., Tavakoli, A., Yousefi, A.R., Nikbakht, J., & Salek Mearaji, H. (2021). Effect of different irrigation regimes on gas exchanges and agronomy traits related to yield in bean (Phaseolus vulgaris). Environmental Stresses in Crop Sciences, 14(1), 63–74. (In Persian with English abstract). https://doi.org/10.22077/escs.2020.2596.1679
  13. Ghalandari, S., Kafi, M., Goldani, M., & Bagheri, A. (2019). The effect of drought stress on some of morphological and physiological traits of common bean (Phaseolus vulgaris) genotypes. Iranian Journal of Pulses Research, 10(1), 114–125. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v10i1.64836
  14. Ghasemi, M., Jahanbin, S., Latifmanesh, H., Farajee, H., & Mirshekari, A. (2021). Effect of brassinolide foliar application on some physiological and agronomic characteristics of sunflower (Helianthus annuus) under drought stress conditions. Journal of Crop Production, 14(1), 31–48. (In Persian with English abstract). https://doi.org/10.22069/ejcp.2021.18084.2339
  15. Ghassemi, A., Farzaneh, S., Moharramnejad, S., Seyed Sharifi, R., & Fathy Youesf, A. (2025). Effect of 24-epibrassinolide, spermine, and silicon on growth traits and grain yield in maize under water deficit stress. Journal of Agricultural Science and Sustainable Production, 34(4), 189–199. (In Persian with English abstract). https://doi.org/10.22034/saps.2023.56134.3022
  16. Gholami, F., Amerian, M.R., Asghari, H.R., & Ebrahimi, A. (2025). Evaluating the impact of yeast extract and 24-epi-brassinolid treatments on physiological characteristics and yield of cowpea (Vigna unguiculata) subjected to irrigation condition. Iranian Journal of Field Crop Science, 56(1), 1–22. (In Persian with English abstract). https://doi.org/10.22059/ijfcs.2024.369864.655052
  17. Hajiri, K., & Pazoki, A. (2023). Investigating the role of brassinolide in tolerance to lead toxicity on growth and physiological traits of pinto beans. Journal of Crop Production, 16(3), 17–32. (In Persian with English abstract). https://doi.org/10.22069/ejcp.2024.20577.2532
  18. Hasani, M., Tadayon, M.R., & Olia, M. (2022). The effect of organic and biological fertilizers on the growth and yield of two bean species (Phaseolus calcaratus and Pachyrhizus erosus (L.) Urban) under drought stress. Journal of Arid Biome, 12(2), 95–110. (In Persian with English abstract). https://doi.org/10.29252/aridbiom.2023.20344.1943
  19. Hussain, M.A., Fahad, S., Sharif, R., Jan, M.F., Mujtaba, M., Ali, Q., Ahmad, A., Ahmad, H., Amin, N., Ajayo, B.S., Jiang, Z., Gu, L., Sun, C., Ahmad, I., & Hou, J. (2020). Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regulation, 92, 141–156. https://doi.org/1007/s10725-020-00647-8
  20. Kaushal, M., & Wani, S.P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66, 35–42. https://doi.org/10.1007/s13213-015-1112-3
  21. Keshtegar Khajedad, M., Sirousmehr, A., Khammari, I., & Dahmardeh, K. (2023). The effect of humic acid foliar application on morphophysiological characteristics and yield of black bean plant under different irrigation regimes. Journal of Crops Improvement, 25(1), 127–142. (In Persian with English abstract). https://doi.org/10.22059/jci.2022.322275.2538
  22. Khan, I., Awan, S.A., Ikram, R., Rizwan, M., Akhtar, N., Yasmin, H., Sayyed, R.Z., Ali, S., & Ilyas, N. (2021). Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia Plantarum, 172(2), 696–706. https://doi.org/1111/ppl.13237
  23. Lima, G.G., dos Santos, G.G.A., da Silva, K.P., da Silva Ribeiro, C., Alves, A.C.B., de Oliveira Neto, C.F., Leão, F.M., dos Santos Junior, J.B., & Hernández-Ruz, E.J. (2025). Application of 24-epibrassinolide promotes the development and growth of Genipa americana seedlings under varying shading levels. Discover Applied Sciences, 7(5), 383. https://doi.org/10.1007/s42452-025-06961-y
  24. Mohajerani, S.H.S., Alavi Fazel, M., Madani, H., Lak, S., & Madhaj, A. (2016). Yield and physiological response of red bean genotypes (Phaseolus vulgaris) to cutting irrigation off at different growth stages. Journal of Crop Ecophysiology, 10(1), 213–224. (In Persian with English abstract).
  25. Mohammadi, M., Pouryousef, M., Tavakoli, A., & Mohseni Fard, E. (2020). Study the effect of epibrassinolide application on the activity of some antioxidant enzymes, nitrate reductase, and photosynthetic pigments of common bean under drought stress. Iranian Journal of Pulses Research, 11(2), 76–94. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v11i2.76131
  26. Mohammadi, M., Pouryousef, M., & Tavakoli, A. (2021). The effect of epibrassinolide application on photosynthetic material allocation, drought tolerance, and seed yield of two pinto bean genotypes (Phaseolus vulgaris). Iranian Journal of Field Crops Research, 19(2), 169–184. (In Persian with English abstract). https://doi.org/10.22067/jcesc.2021.68288.1010
  27. Mohammadi, M., Tavakoli, A., Pouryousef, M., & Mohsenifard, E. (2018). The effect of epibrassinolide on growth and seed yield of bean under optimal irrigation and drought stress conditions. Journal of Crops Improvement, 20(3), 595–608. (In Persian with English abstract). https://doi.org/10.22059/jci.2018.249057.1913
  28. Morosan, M., Al Hassan, M., Naranjo, M.A., López-Gresa, M.P., Boscaiu, M., & Vicente, O. (2017). Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and coccineus (runner bean) cultivars. The EuroBiotech Journal, 1(3), 247–252. https://doi.org/https://doi.org/10.24190/ISSN2564-615X/2017/03.09
  29. Narimanzadeh, A., Sheikhzadeh, P., Zare, N., Sedghi, M., & Rostamihir, M. (2024). Effect of foliar application of nanosilicon on grain yield and some physiological traits of pinto bean under water limitation conditions. Journal of Crop Production, 17(2), 53–70. (In Persian with English abstract). https://doi.org/10.22069/ejcp.2024.21671.2600
  30. Nolan, T.M., Vukašinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32(2), 295–318. https://doi.org/1105/tpc.19.00335
  31. Omidian, M., Roein, Z., & Shiri, M.A. (2022). Effect of foliar application of 24-epibrassinolide on water use efficiency and morpho-physiological characteristics of Lilium LA hybrid under deficit irrigation. Journal of Plant Growth Regulation, 41(4), 1547–1560. https://doi.org/1007/s00344-021-10400-8
  32. Pereira-Netto, A.B., Cruz-Silva, C.T.A., Schaefer, S., Ramírez, J.A., & Galagovsky, L.R. (2006). Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees, 20, 286–291. https://doi.org/10.1007/s00468-005-0041-3
  33. Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R., Del Cerro, P., Espuny, M., Jiménez-Guerrero, I., López-Baena, F.J., Ollero, F., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agriculturally important plants: From microorganism capacities to crop production. Microbiological Research, 169(5–6), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
  34. Pourasadollahi, A., Siosemardeh, A., Hosseinpanahi, F., & Sohrabi, Y. (2020). Effect of spraying of growth regulators on water use efficiency, some osmolites and physiological traits of potato in drought stress conditions. Plant Process and Function, 9(35), 329–345.
  35. Rady, M.M., & Mohamed, G.F. (2015). Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Scientia Horticulturae, 193, 105–113. https://doi.org/10.1016/j.scienta.2015.07.003
  36. Rahimi, H., Eshghizadeh, H.R., Razmjoo, J., Zahedi, M., Ghadiri, A., & Asadi, M. (2023). Evaluation of yield and some morpho-physiological characteristics of pinto bean (Phaseolus vulgaris) genotypes under different irrigation regimes. Iranian Journal of Pulses Research, 14(1), 19–33. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v14i1.2206-1026
  37. Saberali, S.F., Yosefi-fard, M., & Sadat Asilan, K. (2020). Effect of different level of irrigation regimes and nitrogen fertilizer on yield and water use efficiency in kidney bean (Phaseolus vulgaris). Iranian Journal of Pulses Research, 11(2), 137–149. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v11i2.79226
  38. Sadeghipour, A., & Banekdar Hashemi, N. (2015). Study the effect of brassinolide application on drought tolerance of cowpea (Vigna unguiculata Walp.). Crop Physiology Journal, 7(26), 57–70. (In Persian with English abstract).
  39. Safikhani, F., Sharifabadi Syadat, A., Ashorabadi, A., Syednedjad, M., & Abbaszadeh, B. (2007). The effect of drought on yield and morphological characteristics of Deracocephalum moldvica Journal of Medicinal Plants Research, 23(2), 183–194. (In Persian with English abstract).
  40. Shekari, F., Pakmehr, A., Rastgoo, M., Vazayefi, M., & Goreishi Nasab, M.J. (2010). Effect of salicylic acid seed priming on some physiological traits of cowpea (Vigna unguiculata) under water deficit at podding stage. Journal of Crop Ecophysiology, 13(1), 13–30. (In Persian with English abstract).
  41. Talaat, N.B. (2020). 24–Epibrassinolide and spermine combined treatment sustains maize (Zea mays) drought tolerance by improving photosynthetic efficiency and altering phytohormones profile. Journal of Soil Science and Plant Nutrition, 20, 516–529. https://doi.org/10.1007/s42729-019-00138-4
  42. Timmons, D.R., Holt, R.F., & Thompson, R.L. (1967). Effect of plant population and row spacing on evapotranspiration and water‐use efficiency by soybeans. Agronomy Journal, 59(3), 262–265. https://doi.org/10.2134/agronj1967.00021962005900030018x
  43. Upreti, K.K., & Murti, G.S.R. (2004). Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biologia Plantarum, 48(3), 407–411. https://doi.org/10.1023/B:BIOP.0000041094.13342.1b
  44. Wondimu, W.G., & Tana, T. (2017). Yield response of common bean (Phaseolus vulgaris) varieties to combined application of nitrogen and phosphorus fertilizers at Mechara, Eastern Ethiopia. Journal of Plant Biology and Soil Health, 4(2), 1–7. https://doi.org/10.13188/2331-8996.1000018
  45. Yeganehpoor, F., Zehtab-Salmasi, S., Shafagh-Kelvanagh, J., & Ghassemi Golezani, K. (2015). Effect of drought stress chemical and biofertilizer and salicylic acid on grain yield and yield components of coriander (Coriandrum sativum). Crop Production, 9(4), 37–55. (In Persian with English abstract). https://doi.org/10.22069/ejcp.2017.8717.1672
  46. Zafari, M., Ebadi, A., Jahanbakhsh, S., & Sedghi, M. (2020). Safflower (Carthamus tinctorius) biochemical properties, yield, and oil content affected by 24-epibrassinosteroid and genotype under drought stress. Journal of Agricultural and Food Chemistry, 68(22), 6040–6047. https://doi.org/1021/acs.jafc.9b06860
  47. Zahedipour-Sheshglani, P., & Asghari, M. (2020). Impact of foliar spray with 24-epibrassinolide on yield, quality, ripening physiology and productivity of the strawberry. Scientia Horticulturae, 268, 109376. https://doi.org/10.1016/j.scienta.2020.109376
  48. Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max). Plant Growth Regulation, 56, 257–264. https://doi.org/10.1007/s10725-008-9305-4
  49. Zhao, X., Shi, J., Niu, Y., Lu, P., Chen, X., & Mao, T. (2022). 24-epibrassinolide alleviates aluminum toxicity by improving leaf chlorophyll fluorescence and photosynthetic performance and root antioxidant-oxidant balance and ascorbate-glutathione cycle in maize. Russian Journal of Plant Physiology, 69(5), 99. https://doi.org/10.1134/s1021443722050247

 

 

CAPTCHA Image