ارزیابی نوع آرایش کاشت و مدیریت غیرشیمیایی علف‌های هرز بر جذب نیتروژن، فسفر و پتاسیم در سیستم‌های زراعی لوبیا چشم بلبلی ((Vigna unguiculata L.

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 کشت و صنعت نیشکر هفت تپه، اهواز، ایران

چکیده

این پژوهش در سال زراعی ۱۴۰۱ در شرکت کشت و صنعت نیشکر هفت‌تپه، شوش، برای بررسی اثر آرایش کاشت و مدیریت غیرشیمیایی علف‌های هرز بر جذب نیتروژن، فسفر و پتاسیم لوبیا چشم بلبلی ((Vigna unguiculata L. انجام شد. آزمایش فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرا شد. عوامل آزمایشی شامل سه الگوی کاشت (تک‌ردیفه، دوردیفه و سه‌ردیفه با فواصل ۱۰، ۲۰ و ۳۰ سانتی‌متر) و شش سطح مدیریت غیرشیمیایی (شاهد بدون وجین، دو مرتبه وجین، مالچ کلش گندم، مالچ کلش + یک وجین، مالچ باگاس نیشکر، و مالچ باگاس + یک وجین) بودند. نمونه‌برداری از اندام هوایی و دانه در مرحله بلوغ فیزیولوژیکی (پنج گیاه در هر کرت) انجام و با روش‌های استاندارد تجزیه شد. تجزیه واریانس نشان داد که برهم‌کنش آرایش کاشت × مدیریت غیرشیمیایی بر نیتروژن اندام هوایی (۰۵/۰P ≤) و فسفر دانه (۰۱/۰P ≤) معنی‌دار بود. الگوی سه‌ردیفه با ۸۱/۰ درصد فسفر اندام هوایی و ۴/۱ درصد فسفر دانه، به‌دلیل گسترش ریشه و کاهش رقابت علف‌هرز، برتر بود. الگوی دوردیفه با ۶/۱ درصد پتاسیم اندام هوایی و ۴۴/۳ درصد پتاسیم دانه، به‌دلیل تعادل اسمزی و رقابت کمتر درون‌گونه‌ای، بهترین عملکرد را داشت. تیمار مالچ باگاس + یک وجین، وزن تر (۶/۱۵ گرم بر مترمربع) و وزن خشک (۷/۳ گرم بر مترمربع) علف‌های هرز را به‌طور معنی‌داری در سطح پنج درصد کاهش داد. در نهایت پیشنهاد می‌شود که از الگوی سه‌ردیفه و مالچ باگاس نیشکر در کشاورزی پایدار برای کاهش علف‌های هرز و بهبود جذب مواد مغذی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Planting Pattern and Non-Chemical Weed Control Methods on Nitrogen, Phosphorus, and Potassium Uptake Efficiency in Cowpea (Vigna unguiculata L.)

نویسندگان [English]

  • Mohammad Kabi 1
  • Esfandiar Fateh 1
  • Amir Aynehband 1
  • Adel Rafatijoo 2
1 Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Haft Tappeh Sugarcane Agriculture and Industry, Haft Tapeh, Ahvaz, Iran
چکیده [English]

Introduction
 Cowpea (Vigna unguiculata L.) is an annual plant from the legume family. This plant is adaptable to different climates and can be cultivated in many regions of Iran. Legumes often experience strong competition from weeds because of their slow early growth rate and limited leaf area development during the initial stages of growth. Weeds reduce nutrient uptake, make mechanized harvesting difficult, and reduce the quality and quantity of grain and straw. Therefore, weed control is a key aspect of agricultural production. Chemical control is not the only solution. The continuous use of herbicides has negative environmental impacts and is not compatible with the goals of sustainable agriculture. Planting arrangements enhance weed competition by altering the structure of the canopy. Mulches reduce water evaporation, improve soil temperature, and reduce competition for water and nutrients. Mulches inhibit weed germination by providing shade, a physical barrier, and the release of allelopathic substances. They also reduce water evaporation, improve soil temperature, and reduce competition for water and nutrients. Mulches suppress weed germination by providing shade, a physical barrier, and the release of allelopathic substances. Despite the great differences in the growth habits of cowpea species, little is known about the effect of these differences on weed competition. Also, the effect of planting arrangement and plant mulch on yield and weed competition has not been investigated. Therefore, this study was conducted to determine the optimum planting arrangement to reduce yield loss and to evaluate the role of mulch in controlling weeds and their competition with cowpea.
 
Materials and Methods
This study was conducted during the 2021–2022 growing season at Haft Tappeh Sugarcane Cultivation Company in Shush, Iran, to evaluate the effects of planting patterns and non-chemical weed control methods on the uptake efficiency of nitrogen (N), phosphorus (P), and potassium (K) in cowpea (Vigna unguiculata). The experiment was arranged as a factorial based on a randomized complete block design with three replications. The first factor was planting arrangement at three levels: (1) single-row planting with 10 cm spacing, (2) double-row planting with 20 cm spacing, and (3) triple-row planting with 30 cm spacing. The second factor was weed management method at six levels: (1) weed-infested control, (2) hand weeding twice (4 & 8 weeks after emergence), (3) wheat stubble mulch (5 t/ha), (4) wheat stubble mulch + weeding once, (5) sugarcane bagasse mulch (5 t.ha-1), and (6) sugarcane bagasse mulch + weeding once. Each plot consisted of 4 ridges, 75 cm wide and 9 m2 in area. The amount of mulch in each plot was 4.5 kg with an approximate thickness of 5-7 cm. The mulches were distributed after planting and before the first irrigation (24/07/2022). Cowpea  (Mashhadi cultivar) was planted on 23/07/2022. Mulches were distributed after the first irrigation, when the soil reached its field capacity, to prevent displacement. Fertilization included 100 kg.ha-1 of phosphorus (triple superphosphate), 100 kg.ha-1 of potassium (potassium sulfate) as a base, and 40 kg/ha of nitrogen (urea) in two applications (4-leaf stage and stem growth, 20 kg.ha-1 each). Weed density and dry weight were measured 4 weeks after the treatments and at the end of the growth period with a 1×1 m2 quadrat. Statistical analysis was performed with SAS version 9.4, and the means were compared with the LSD test at the 5% level (p < 0.05).
 
Results and Discussion
The results indicated that the interaction of planting arrangement and non-chemical weed control significantly affected nitrogen content in shoots (p < 0.05) and phosphorus content in seeds (p < 0.01). The triple-row planting arrangement exhibited the highest phosphorus content in shoots (0.81%) and seeds (1.4%), attributed to enhanced root expansion and reduced weed competition. The double-row arrangement showed the highest potassium content in shoots (6.1%) and seeds (3.44%), due to reduced intra-species competition. The treatment of sugarcane bagasse mulch + weeding once reduced wet and dry weed biomass significantly at 5% level (wet: 15.6 g.m-²; dry: 3.7 g.m-²).
 
Conclusion
The integrated application of sugarcane bagasse mulch and weeding once effectively decreased weed competition and enhanced nutrient availability, improved cowpea yield. Given the environmental concerns associated with chemical herbicides, these sustainable practices offer promising alternatives for weed management and soil fertility enhancement.

کلیدواژه‌ها [English]

  • Hand weeding
  • Mulch
  • Nutrient Uptake
  • Sugarcane Bagasse

Authors retain the copyright.This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Braz, G.B.P., Machado, F.G., do Carmo, E.L., Rocha, A.G.C., Simon, G.A., & Ferreira, C.J.B. (2019). Desempenho agronômico e supressão de plantas daninhas no sorgo em semeadura adensada. Revista de Ciências Agroveterinárias, 18(2), 170–177. https://doi.org/10.5965/223811711812019170
  2. Behgam, M., Amini, R., & Dabagh Mohammadi Nasab, A. (2019). Integrated application of mulch and reduced doses of imazethapyr for weed management in bean (Phaseolus vulgaris). Weed Science of Iran, 15(1), 109–124. https://doi.org/ 10.22092/IJWS.2019.1501.08 (In Persian with English abstract)
  3. Birla, D., Pandey, I.B., Singh, D., Ranjan, P., Solanki, K., & Sandeep, S.N. (2023). Effect of tillage and weed management practices on dry matter, yield and nutrient uptake by plant and depletion by weed in lentil crop (Lens culinaris). International Journal of Environment and Climate Change, 13(9), 288–298. https://doi.org/10.9734/ijecc/2023/v13i92231
  4. Fang, S., Xie, B., Liu, D., & Liu, J. (2011). Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New Forests, 41(2), 147-162. https://doi.org/1007/s11056-010-9217-9
  5. Farnham, D.E. (2001). Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agronomy Journal, 93(5), 1049–1053. https://doi.org/10.2134/agronj2001.9351049x
  6. Fontes, J.R.A., Gonçalves, J.R.P., & de Morais, R.R. (2010). Tolerância do feijão-caupi ao herbicida oxadiazon. Pesquisa Agropecuária Tropical, 40(1), 110–115. https://doi.org/10.5216/pat.v40i1.6241
  7. Freckleton, R.P., & Watkinson, A.R. (2001). Asymmetric competition between plant species. Functional Ecology, 15, 615–623. https://doi.org/10.1046/j.0269-8463.2001.00558.x
  8. Ghanbari Birgani, D., Zand, E., Bbarzegari, M., & Khoramiia, M. (2010). Effect of planting patterns and herbicides application on weed population, grain yield and water use efficiency in maize (Zea mays cv. KSC 704). Iranian Journal of Crop Sciences, 12(1), 1-17. (In Persian with English abstract)
  9. Gherekhloo, J., Rashedmohassel, M.H., Mahalati, M.N., Zand, E., Ghanbari, A., Osuna, M.D., & de Prado, R. (2011). Confirmed resistance to aryloxyphenoxypropionate herbicides in Phalaris minor populations in Iran. Weed Biology and Management, 11(1), 29–37. https://doi.org/10.1111/j.1445-6664.2011.00402.x
  10. Gholamhosseini, M., Aghaalikhani, M., & Habibzadeh, F. (2015). Effect of redroot pigweed (Amaranthus retroflexus) interference on corn (Zea mays L.) yield quantity and quality under different irrigation and nitrogen levels. Weed Research Journal, 7(2), 1-22. (In Persian).
  11. Gibson, K.D., McMillan, J., Hallett, S.G., Jordan, T., & Weller, S.C. (2011). Effect of a living mulch on weed seed banks in tomato. Weed Technology, 25(2), 245–251. https://doi.org/10.1614/WT-D-10-00101.1
  12. Hamada, A.M., & El-Enany, A.E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36, 75–81. https://doi.org/10.1007/BF02921273
  13. Jackson, M.L. (1967). Soil chemical analysis. Prentice-Hall of India Private Limited. Pvt. Ltd., New Delhi, 498p.
  14. Khan, M.A., Kakar, S., Marwat, K.B., & Khan, I.A. (2013). Differential response of Zea mays in relation to weed control and different macronutrient combinations. Sains Malaysiana, 42, 1395-1401.
  15. Mir, S. (2008). A rapid technique for determination of nitrate and nitric acid by acid reduction and diazotization at elevated temperature. Analytica Chimica Acta, 620(1–2), 183–189. https://doi.org/10.1016/j.aca.2008.05.038
  16. Nan, X.U., Bhadha, J.H., Rabbany, A., Swanson, S., McCray, J.M., Li, Y., & Mylavarapu, R. (2022). Sugarcane bagasse amendment mitigates nutrient leaching from a mineral soil under tropical conditions. Pedosphere, 32(6), 876–883. https://doi.org/10.1016/j.pedsph.2022.06.020
  17. Purcell, L.C., & King, C.A. (1996). Total nitrogen determination in plant material by persulfate digestion. Agronomy Journal, 88(1), 111–115. https://doi.org/10.2134/agronj1996.00021962008800010023x
  18. Rabbani, S., Ordukhani, K., Aref, F., Farmer, M., & Sharafzadeh, S. (2023). The effect of organic mulches on soil properties and vegetative characteristics of caper (Capparis spinosa) for planting in coastal pastures of southern Iran. Marate Magazine, 13(2), 143–154.
  19. Robles, M., Ciampitti, I.A., & Vyn, T.J. (2012). Responses of maize hybrids to twin‐row spatial arrangement at multiple plant densities. Agronomy Journal, 104(6), 1747–1756. https://doi.org/10.2134/agronj2012.0231
  20. Sekhawat, R., Ghanbaribirgani, D., & Mirzashahi, K. (2018). Instructions for planting, growing, and harvesting cowpeas in Khuzestan. Publications of the Institute for Plant Breeding and Seed Production Research. 26 pp.
  21. Sinchana, J.K., & Raj, L. (2020). Integrated weed management in bush type vegetable cowpea (Vigna unguiculata unguiculata (L.) Verdcourt). Doctoral Dissertation, College of Agriculture, Vellayani.
  22. Soufizadeh, S., Zand, E., Baghestani, M.A., Kashani, F.B., Nezamabadi, N., & Sheibany, K. (2007). Integrated weed management in saffron (Crocus sativus). In II International Symposium on Saffron Biology and Technology, 739 (pp. 133-137). https://doi.org/10.17660/ActaHortic.2007.739.17
  23. Sousa, J. de P.F., Sousa, P.G.R., Silva, L.S., Alcântara, P.F., Costa, C.P.M., & Costa, R.N.T. (2017). Initial development of papaya under doses of vegetable ash and mulch in an organic system. Brazilian Journal of Irrigated Agriculture, 11, 1804–1812.
  24. Tharp, B.E., & Kells, J.J. (2001). Effect of glufosinate-resistant corn (Zea mays) population and row spacing on light interception, corn yield, and common lambsquarters (Chenopodium album) growth. Weed Technology, 15(3), 413–418. https://doi.org/10.1614/0890-037X(2001)015 [0413: EOGRCZ]2.0.CO;2
  25. Zhang, J., Wu, L.F., & Li, B.B. (2021). Weed responses to crop residues management in a summer maize cropland in the North China Plain. Agriculture, 11(8), 46–60. https://doi.org/10.3390/agriculture11080746

 

CAPTCHA Image