تأثیر نظام‌های مختلف کشت بر رشد گیاهچه و ویژگی‌های کمّی و کیفی برنج (Oryza sativa L.) در شرایط خزانه و مزرعه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشگاه کرونل، دانشگاه کالیفرنیا، برکلی

چکیده

برنج (Oryza sativa L.) به‌عنوان یکی از محصولات راهبردی کشاورزی، به‌طور چشمگیری تحت تأثیر نظام‌های مختلف کشت قرار می‌گیرد و نقش حیاتی در تأمین امنیت غذایی در جهان دارد. این پژوهش با هدف بررسی اثر نظام‌های مختلف رایج و فشرده‌سازی اکولوژیک بر رشد گیاهچه، عملکرد دانه و خصوصیات کیفی برنج (رقم طارم هاشمی) طی دو آزمایش جداگانه در شرایط خزانه و مزرعه در مزرعه شخصی واقع در شهرستان بابل در دو سال زراعی 1400 و 1401 در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار انجام شد. تیمارهای آزمایش در خزانه شامل سه مقدار مصرف بذر (100، 200 و 300 گرم در مترمربع به‌ترتیب برای نظام­های فشرده­سازی اکولوژیک، حدواسط و رایج) بود. در مزرعه، تیمارهای سه نظام‌ مدیریتی شامل فشرده‌‌سازی اکولوژیک (یک گیاهچه در هر کپه، کم­­آبیاری به‌صورت متناوب، تراکم 11 بوته در مترمربع و سن گیاهچه 20 روزه)، رایج یا سنتی (هشت گیاهچه در هر کپه، آبیاری به‌صورت 10 سانتی‌متر بالاتر از سطح خاک، تراکم 25 بوته در مترمربع و سن گیاهچه 40 روزه) و حد واسط (چهار گیاهچه در هر کپه، آبیاری به‌صورت اشباع در سطح خاک، تراکم 16 بوته در مترمربع و سن گیاهچه 30 روزه) بودند. نتایج آزمایش در بخش خزانه نشان داد که اثر اصلی نظام‌های کاشت بر طول و قطر طوقه و نیز قطر ریشه گیاهچه معنی‌دار بود. البته به­غیر از عمق نفوذ ریشه، اثر متقابل سال و نظام‌های کشت بر سایر صفات غیرمعنی­دار بود، به‌طوری­که طول و قطر طوقه گیاهچه و قطر ریشه در نظام فشرده‌سازی اکولوژیک به‌ترتیب برابر با 5/24 سانتی­متر، 1/4 میلی‌متر و 52/0 میلی­متر بودند که برتر از سایر نظام‌ها تعیین شد. در هر دو سال، بیشترین عمق نفوذ ریشه به نظام فشرده‌سازی اکولوژیک اختصاص داشت. در مقابل، کمترین مقادیر این صفات برای نظام رایج مشاهده شد. بررسی صفات کمّی در شرایط مزرعه نشان داد که اثر متقابل سال و نظام‌های کشت بر تعداد پنجه بارور معنی­دار بود، به­طوری­که بیشترین پنجه بارور (5/29 پنجه در بوته) برای نظام فشرده­سازی اکولوژیک مشاهده شد. اثر نظام­های کشت بر عملکرد زیستی و عملکرد دانه معنی­دار بود، به­طوری­که بیشترین عملکرد زیستی (29000 کیلوگرم در هکتار) و عملکرد دانه (8300 کیلوگرم در هکتار) برای نظام فشرده‌سازی اکولوژیک مشاهده شد. همچنین بیشترین درصد آمیلوز و نمره ژلاتینه شدن در نظام فشرده‌سازی اکولوژیک (به‌ترتیب با 7/22 درصد و 7/3) مشاهده شد و کمترین میزان برای نظام رایج (به‌ترتیب با 5/21 درصد و 0/3) به دست آمد. به­طور کلی، نتایج این آزمایش نشان داد که نظام فشرده‌سازی اکولوژیک در مقایسه با سایر نظام‌های مدیریتی، عملکرد دانه بیشتری داشت و به‌عنوان نوعی رویکرد کارآمد می­تواند در مدیریت اکولوژیک تولید برنج مدنظر قرار گرفته که بر این اساس، به تولید پایدار، امنیت غذایی و بهبود ویژگی‌های زیست‌محیطی نیز کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Different Planting Systems on Seedling Growth, Quantitative Characteristics and Quality of Rice (Oryza sativa L.) in the Nursery and Field Conditions

نویسندگان [English]

  • Omid Monemi Amiri 1
  • Surur Khorramdel 1
  • Alireza koocheki 1
  • Norman Uphoff 2
1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Cornell University, University of California, Berkeley
چکیده [English]

Introduction
 Rice (Oryza sativa L.) is recognized as one of the earliest cultivated crops, providing essential nutrients for human growth and health. One of the major challenges today is the severe limitation of arable land available for rice production. This issue is particularly critical in countries with arid and semi-arid climates and limited water resources, such as Iran, where rice cultivation requires substantial amounts of water. Ecological intensification is an approach that optimally utilizes natural resources to enhance productivity while minimizing negative environmental impacts. The present study aimed to investigate the effects of various cultivation systems on the quantitative and qualitative characteristics of rice (Tarom Hashemi cultivar).
 
Materials and Methods
This study was conducted through two separate experiments based on a randomized complete block design with four replications, under nursery and field conditions in the city of Babol, Iran, during the 2022 and 2023 growing seasons. The experimental treatments included three cultivation systems: the System of Rice Intensification (SRI), an intermediate system, and a traditional system. In the nursery, seed densities for the ecological intensification, intermediate, and traditional systems were set at 100, 200, and 300 g.m-², respectively. In field conditions, treatments included transplanting ages of seedlings (20, 30, and 40 days), planting densities (25, 30 and 20 plants.m-2), irrigation regimes (water deficit as alternative water, saturated irrigation at the soil level, and permanent waterlogging in 10 cm above the soil), and the number of seedlings (1, 4, and 8 seedlings per hill). The traits under investigation included seedling length, stem diameter, and root diameter at the time of transplanting from the nursery to the field. Evaluated quantitative traits included growth characteristics (panicle length), yield components (percentage of unfertile grains and number of productive tillers), biological yield, paddy yield, harvest index, and quality traits (amylose content and gel consistency temperature).
 
Results and Discussion
The results from the nursery experiment indicated that the main effect of planting systems on stem length, stem diameter, and root diameter of seedlings was significant. Except for root length, the interaction between year and planting systems was not significant for the other traits in the nursery. In the ecological intensification system, stem diameter, stem length, and root diameter measured 24.5 cm, 4.1 mm, and 0.52 cm, respectively. In both years, the longest root length observed was 13 cm in the ecological intensification system. In contrast, the lowest values for these traits were recorded in the traditional system. The examination of quantitative traits of rice in field conditions revealed significant interaction effects between year and planting systems on the number of fertile tillers. The highest number of fertile tillers was recorded for SRI. The effect of planting systems was significant on both biological yield and paddy yield. The maximum biological yield (2.9 kg/ha) and paddy yield (0.83 kg/ha) were associated with SRI. The highest amylose content and gel consistency temperature were found in the ecological intensification system (with 22.7% and 3.7, respectively), while the traditional system exhibited the lowest values (with 21.5% and 3.0, respectively). Correlation coefficients between paddy yield with panicle length (r = 0.98**), number of fertile tillers (r = 0.99**), and biological yield (r = 0.97**) were all positive and statistically significant at the 1% probability level.
 
Conclusion
 Overall, the results of this study demonstrate that the ecological intensification system outperformed the other management systems and can be considered an effective approach in ecological management. This contributes to sustainable production, food security, and improvements in environmental characteristics.







 




 
 

کلیدواژه‌ها [English]

  • Amylose content
  • Fertile tillers
  • Gel consistency temperature
  • System of rice intensification

Authors retain the copyright.This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Agricultural (2023). Ministry of Agriculture. Economic Planning Deputy. Center for Statistics, Information Technology and Communication. The First Volume. Crops. 95 pp. (In Persian).
  2. Allahgholipour, M. (2018). Prediction of high and intermediate amylose groups based on the starch physicochemical properties in rice (Oryza sativa) genotypes. Iranian Journal of Crop Sciences, 20(2), 139-150. (In Persian with English abstract)
  3. Amini, R., Zafarani-Moattar, P., Shakiba, M.R., & Hasanfard, A. (2023). Inoculating moldavian balm (Dracocephalum moldavica) with mycorrhizal fungi and bacteria may mitigate the adverse effects of water stress. Journal of Scientific Reports, 13(1), 16176. https://doi.org/10.1038/s41598-023-43539-3
  4. Arouna, A., Dzomeku, I.K., Shaibu, A.G., & Nurudeen, A.R. (2023). Water management for sustainable irrigation in rice (Oryza sativa) production: A review. Journal of Agronomy, 13, 1522. https://doi.org/10.3390/agronomy13061522
  5. Arsil, P., Sahirman, S., Ardiansyah, H., & Hidayat, H. (2019). The reasons for farmers not to adopt System of Rice Intensification (SRI) as a sustainable agricultural practice: An explorative study. IOP Conf. Series: Journal of Earth and Environmental Science, 250, 012063. https://doi.org/10.1088/1755-1315/250/1/012063
  6. Bouman, B.A.M., Lampayan, R.M., & Tuong, T.P. (2007). Water management in irrigated rice: Coping with water scarcity. Los Baños (Philippines): International Rice Research Institute. 54 p.
  7. Chowdhury, M.R., Kumar, V., Sattar, A., & Brahmachari, K. (2014). Studies on the water use efficiency and nutrient uptake by rice under system of intensification. Journal of the Bioscan, 9(1), 85–88.
  8. Dastan, S., Noormohamadi, G., Madani, H., Ebrahimi, M., & Yasari, E. (2016). Investigation of growth and phenology of main crop and ratoon of rice cultivars in different cropping systems. Journal of Plant Production Technology, 16(1), 81-101. (In Persian with English Abstract). https://doi.org/10.22084/ppt.2016.1769
  9. Fathi, N., Pirdashti, H., Nasiri, M., & Bakhshandeh, E. (2017). Effect of weather temperature and solar radiation on grain yield and yield components of rice under different local climates in Mazandaran province. Journal of Crops Improvement, 19(1), 163-176. (In Persian with English abstract). https://doi.org/ 22059/jci.2017.60406
  10. Food and Agriculture Organization of the United Nations (FAO). (2023). Available online: http://www.fao.org/3/i1688e/i1688e00.1
  11. Ghorbanian Astana, Y., Amiri, E., Razavipour, Y., & Rezaei, M. (2013). Investigating the effect of new cultivation management system (SRI) on grain yield and water efficiency in rice fields. Journal of Agroecology, 4, 53-61. (In Persian with English abstract).
  12. Habibi Kiahabadi, F., Hosseini, M., Yekta, M., Adeli, F., Jarian, M., & Talakoobi, M. (2018). Investigation of physical and chemical properties of rice grains and factors affecting cooking quality in different rice varieties [Research project]. Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO). Scientific National ID: R-1068478.
  13. Hosseinpoor, S., Moghadam, H., & Pirdashti, H. (2022). Evaluation of yield and yield components of rice cv. ‘Tarom Hashemi’ in system of rice intensification (SRI) and conventional systems. Journal of Agricultural Science and Sustainable Production, 31(3), 329-340. (In Persian with English abstract). https://doi.org/22034/saps.2021.36888.2376
  14. Juliano, B.O. (1971). Simplified assay for milled-rice amylose. Journal of Cereal Science Today, 16, 334-360.
  15. Juliano, B.O. (1982). International co-operative testing of the alkali digestibility values for milled rice. Journal of Starch, 34, 21-26. https://doi.org/1002/star.19820340106
  16. Mahdavi Damghani, A., Kambouzia, J., Aghamir, F., & Mahmoudi, H. (2019). Sustainable intensification of agricultural systems in Iran for adaptation to climate change: Opportunities and challenges. Journal of Strategic Research Agricultural Sciences and Natural Resources, 4(2), 157-168. (In Persian with English abstract). https://doi.org/10.31433/1605-220X-2018-21-3(1)-118-123
  17. Mansour Ghanaei-Pashaki, K., Mohsen Abadi, G., Biglouei, M.H., Farhangi, M.B., & Mokhtassi-Bidgoli, A. (2022). Effect of rice-duck co-cultivation on the trend of changes in growth indices, photosynthesis and irrigation and precipitation water productivity in different cultivation systems. Journal of Agricultural Science and Sustainable Production, 32(1), 149-147. https://doi.org/22034/saps.2021.44833.2646
  18. Menete, M.Z.L., Van Es, H.M., Brito, R.M.L., DeGloria, S.D., & Famba, S. (2008). Evaluation of system of rice intensification (SRI) component practices and their synergies on salt-affected soils. Journal of Field Crops Research, 109(1-3), 34-44. https://doi.org/1016/j.fcr.2008.06.003
  19. Modarresi, M. (2023). Rice breeding in Iran: Current status and future perspective. Journal of Plant Breeding and Biotechnology, 11(2), 97-104. https://doi.org/9787/PBB.2023.11.2.97
  20. Paul, S.K.K., Akter, M., Sarkar, S.K., & Sarkar, M.A.R. (2018). Effect of nursery seeding density, age of seedling and number of seedlings hill-1 on the performance of short duration transplanted of rice (cv. Parija). Journal of the Bangladesh Agricultural University, 16(2), 215-220. https://doi.org/3329/jbau.v16i2.37963
  21. Prasad, R., Shivay, Y.S., & Kumar, D. (2017). Current status, challenges, and opportunities in rice production. Rice Production Worldwide, 1-32. https://doi.org/1007/978-3-319-47516-5_1
  22. Rodríguez Coca, L.I., García González, M.T., Gil Unday, Z., Jiménez Hernández, J., Rodríguez Jáuregui, M.M., & Fernández Cancio, Y. (2023). Effects of sodium salinity on rice (Oryza sativa) cultivation: A review. Journal of Sustainability, 15(3), 1804. https://doi.org/10.3390/su15031804
  23. Sahoo, U., Biswal, M., Nayak, L., Kumar, R., Tiwari, R.K., Lal, M.K., Bagchi, T.B., Sah, R.P., Singh, N.R., Sharma, S., Nyak, A.K., & Kumar, A. (2025). Rice with lower amylose content could have reduced starch digestibility due to crystallized resistant starch synthesized by linearized amylopectin. Journal of the Science of Food and Agriculture105(5), 3064-3072 https://doi.org/1002/jsfa.14074
  24. Shokhmegar, Y., & Mousavi Toghani, S.Y. (2019). Evaluation of irrigation regimes and seedling age effects on rice (Oryza sativa) yield and yield components in conventional and ecological systems. Journal of Iranian Irrigation and Drainage, 13(2), 389-399. (In Persian with English abstract).
  25. Sridevi, V., & Chellamuthu, V. (2012). Influence of system of rice intensification on growth, yield and nutrient uptake of rice (Oryza sativa). Journal of Madras Agricultural, 99(4-6), 305-307.
  26. Sun, G., Sun, M., Du, L., Zhang, Z., Wang, Z., Zhang, G., & Wang, H. (2021). Ecological rice-cropping systems mitigate global warming: A meta-analysis. Journal of Science of the Total Environment, 789, 147900. https://doi.org/1016/j.scitotenv.2021.147900
  27. Thakur, A.K., Mohanty, R.K., Patil, D.U., & Kumar, A. (2014). Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Journal of Paddy and Water Environment, 12, 413–424. https://doi.org/1007/s10333-013-0397-8
  28. Thakur, A.K., Rath, S., Patil, D.U., & Kumar, A. (2011). Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Journal of Paddy and Water Environment, 9, 13-24. https://doi.org/1007/s10333-010-0236-0
  29. Ungureanu, N., Vlăduț, V., & Voicu, G. (2020). Water scarcity and wastewater reuse in crop irrigation. Journal of Sustainability, 12, 9055. https://doi.org/3390/su12219055
  30. Uphoff, N., Kassam, A., & Thakur, A. (2013). Challenges of increasing water saving and water productivity in the rice sector: Introduction to the system of rice intensification (SRI) and this issue. Journal of Taiwan Water Conservancy, 61(4), 1–13.
  31. Wakasa, Y. (2024). The use of rice seed as a bioreactor. In: Applications of Plant Molecular Farming (pp. 547-567). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-0176-6_20
  32. Yang, J., & Zhang, J. (2010). Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 61(12), 3177-3189. https://doi.org/1093/jxb/erq112
  33. Yang, J., Zhou, Q., & Zhang, J. (2017). Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. The Crop Journal, 5, 151-158. https://doi.org/1016/J.CJ.2016.06.002
  34. Zhang, H., Xue, Y., Wang, Z., Yang, J., & Zhang, J. (2009). Morphological and physiological traits of roots and their relationships with shoot growth in ‘‘Super’’ rice. Field Crops Research, 113, 31–40. https://doi.org/1016/j.fcr.2009.04.004

 

 

CAPTCHA Image