بررسی اثرات‌ زیست‌محیطی آفت‌کش‌های مورد استفاده در مزارع کلزا(Brassica napus L.) ، چغندر قند(Beta vulgaris L.) و سیب زمینی (Solanum tuberosum L.)شهرستان علی آباد کتول استان گلستان با استفاده از شاخص EIQ

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

شاخص تأثیر زیست‌محیطی (EIQ) می­تواند میزان خطر سموم مختلف کشاورزی را نشان دهد. این مطالعه به بررسی اثرات‌ زیست­محیطی آفت­کش­های مورد استفاده در 21 مزرعه کلزا(Brassica napus L.) ، ، شش مزرعه سیب­زمینی(Solanum tuberosum L.) و پنج مزرعه چغندرقند  (Beta vulgaris L.)در شهرستان علی‌آباد‌ کتول (استان گلستان) در سال زراعی 1401-1400 انجام شد. اطلاعات مربوط به سم‌پاشی آفت­کش­ها، مزارع، تناوب­ زراعی و عملکرد محصول با پایش مستمر و مصاحبه چهره‌به‌چهره از کشاورزان جمع­آوری شد. مقدار اثر محیط زیستی سموم در واحد هکتار (EIQ-FUR)، از حاصل‌ضرب مقدار EIQ آن­ها در مقدار ماده مؤثره و مقدار مصرف در واحد هکتار به دست آمد. در نهایت، نقشه طبقه­بندی میزان آسیب محیط زیستی مزارع تهیه گردید. در میان آفت­کش­های مصرف‌شده، بیش­ترین میزان آسیب به کارگر مزرعه در گروه علف‌کش­ها متعلق به گراماکسون، در گروه حشره­کش­ها مربوط به فوزالن، کلرپیریفوس و تیاکلوپراید و در گروه قارچ‌کش­ها به مانکوزب، سایپروکونازول + کاربندازیم و تبوکونازول تعلق گرفت. همچنین قارچ‌کش­های تبوکونازول، سایپروکونازول + کاربندازیم و تیوفانات متیل در مقایسه با گروه آفت­کشی علف‌کش و حشره­کش، آسیب بیش­تری بر جزء مصرف­کنندگان و خطر آب‌شویی در محیط زیست نشان دادند. بررسی آفت­کش­های مصرفی و آسیب بر اجزای بوم­شناختی، دو حشره­کش دیازینون و کلرپیریفوس را به­عنوان خطرناک­ترین آفت­کش­ها برای موجودات محیط زیست معرفی کرد. بررسی نقشه‌ها نشان داد که اکثر مزارع کلزا و چغندرقند در طبقه آسیب کم و خیلی کم قرار گرفته­اند، درحالی‌که مزارع سیب­زمینی در طبقه آسیب محیط زیستی متوسط و زیاد قرار دارند. به عبارتی، اثر زیست­محیطی و آلودگی ناشی از کشت سیب­زمینی بیش­تر از دو محصول دیگر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Environmental Effects of Applied Pesticides on Canola (Brassica napus L.), Sugar Beet (Beta vulgaris L.), and Potato (Solanum tuberosum L.) Fields in Ali Abad Katool County, Golestan Province by EIQ Model

نویسندگان [English]

  • Zahra Deilam
  • Hossein Kazemi
  • Maral Niazmoradi
  • Javid Gherekhloo
Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Recourses, Gorgan, Iran
چکیده [English]

Introduction
Considering the growth of the human population, limited resources in the agricultural sector, and the urgent need to increase production, it is essential to implement logical and principled pest control measures, with a strong emphasis on protecting the health of farmers, community members, and the environment. The Environmental Impact Quotient (EIQ) can show the risk of different agricultural pesticides by considering the amount of damage to the health of these three components. This study investigated the environmental effects of pesticides used in canola, sugar beet, and potato fields in Aliabad Katool County (Golestan province), during 2021-2022.
Materials and Methods
For this purpose, 21 canola fields, six potato fields, and five sugar beet fields were randomly selected and information related to pesticide spraying, field area, crop rotation, and crop yield with continuous monitoring, face-to-face interviews, and completed questionnaires was collected from farmers. Also, the EIQ values ​​related to the pesticide use in these fields were collected through articles and reliable websites. The amount of environmental effect of pesticides per hectare (EIQ-FUR) was obtained from the product of their EIQ value in the amount of effective substance and the consumption amount per hectare. The amount of environmental damage of each field was calculated from the sum of EIQ-FURs of pesticides consumed in that field per hectare. Finally, a classification map of the extent of environmental damage to the studied crops was prepared in Ali Abad Katool county.
Results and Discussion
In general, among the pesticides used in these farms, the highest damage to farm workers is in the group of herbicides related to Gramaxone, in the group of insecticides related to Phosalone, Chlorpyrifos, and Thiacloprid, and in the group of fungicides, Mancozeb, Cyproconazole+Carbendazim, and Tebuconazole. Also, the fungicides Tebuconazole, Cyproconazole+Carbendazim, and Thiophanate-methyl showed more damage to consumers, and the risk of leaching in the environment compared to the group of herbicides, and insecticides. Investigating the pesticides used and damage to the ecological components, two insecticides, Diazinon and Chlorpyrifos, were introduced as the most dangerous pesticides on the organisms of the environment. Based on the average of these damages, or in other words, the EIQ index for each pesticide, Cyproconazole+Carbendazim, Chlorpyrifos and Diazinon, Tebuconazole and Imidaclopride 35 % and Imidaclopride 70 % were identified as the most dangerous pesticides in the studied fields. The highest environmental effect of pesticides per hectare belongs to Mancozeb fungicide with EIQ-FUR equal to 61.72. This fungicide has an average EIQ (25.72) compared to pesticides such as Cyproconazole+Carbendazim, Chlorpyrifos and Diazinon, etc., but due to the high percentage of the effective substance and the amount used in the potato fields of the region (3 liters per hectare), causes the most damage and toxicity to the environment. Also, the increase in the frequency and amount of Trifluralin herbicide consumption in potato fields (4 liters per hectare) has caused it to be introduced as the second most dangerous pesticide in the region. In addition, the insecticides chlorpyrifos (1.5 liters) and diazinon (one liter) and the fungicide methyl thiophanate (one liter) are respectively EIQ-FUR and have a higher environmental effect than other pesticides per hectare unit and therefore more planning should be done in their use or replacement.
Conclusion
The distribution map of the environmental effects of pesticides in the investigated crops showed that most of the canola and sugar beet fields were in the class of low and very low risk, while the potato fields were in the class of medium and high risk. In other words, the environmental effect and pollution caused by potato cultivation has been more than the other two crops. The increase in the consumption of fungicides and herbicides in potato cultivation has led to increased damage to organisms and the environment.
Acknowledgments
We would like to thank Gorgan University of Agricultural Sciences and Natural Resources, wheat and barley farmers, and agricultural Jihad management of Fazel Abad region, Ali Abad Katool County for their cooperation in conducting this research.







 




 
 

کلیدواژه‌ها [English]

  • Fungicide
  • Herbicide
  • Insecticide
 

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

  1. Arefi, R., Soltani, A., & Ajam Noroozi, H. (2017). Environmental assessment of agricultural pesticides used in cotton fields in Golestan province. Journal of Agroecology, 10(4), 1135-1148. (in Persian with English abstract). https://doi.org/22067/JAG.V10I4.61847
  2. Ansah, B. (2019). Assessment pesticides application and impacts among smallholder cocoa farmers in western Region-Ghana. Thesis submitted to the Department of Environmental Science of the School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, in partial fulfilment of the requirements for the award of Master of Philosophy degree in Environmental Science.
  3. Balali, H., & Mohammadi, M. (2019). Investigating the economic behavior of wheat farmers in Kermanshah to reduce the negative environmental impacts of chemical fertilizers (Application of Contingent Valuation Method). Iranian Journal of Agricultural Economics and Development Research, 50(4), 643-657. (in Persian with English abstract). https://doi.org/10.22059/IJAEDR.2019.275898.668722
  4. Barghi, H., Hassaninezhad, A., & Shayan, M. (2017). Evaluate the effect of agricultural inputs and chemical pesticides on rurals’ environment (Case study: Zarindasht city rural area). Enviromental Hazards Management, 4(3), 247-262. (in Persian with English abstract). https://doi.org/10.22059/JHSCI.2018.248113.306
  5. Barzegar, S.M.M. (2019). Piece toxinx and chemical fertilizers on the soil and the health of the biologists. 16th Iranian soil science Congress University of Zanjan, Iran, August 27-29. (in Persian)
  6. Bazrgar, A.B., Soltani, A., Koocheki, A., Zeinali, E., & Ghaemi, A. (2013). Evaluation of the environmental impacts of pesticides used in sugar beet (Beta vulgaris) production systems in Khorasan provinces. Journal of Agroecology, 5(2), 122-133. (in Persian with English abstract). https://doi.org/10.22067/JAG.V5I2.24463.
  7. Bues, R., Bussières, P., Dadomo, M., Dumas, Y., Garcia-Pomar, M.I., & Lyannaz, J.P. (2004). Assessing the environmental impacts of pesticides used on processing tomato crops. Agriculture Ecosystems and Environment, 102, 155-162. https://doi.org/10.1016/j.agee.2003.08.007
  8. Dehghani, R., Limoee, M., & Zarghi, I. (2012). The review of pesticide hazards with emphasis on insecticide resistance in arthropods of health risk importance. Scientific Journal of Kurdistan University of Medical Sciences, 17(1), 82-98. (in Persian with English abstract): http://sjku.muk.ac.ir/article-1-742-fa.html
  9. Fazel Abad Agricultural Service Center. (2022). Management of crops and horticulture. https://www.ajgol.ir 
  10. Gios, G., Farinelli, S., Kheiraoui, F., Martini, F., & Orlando, J.G. (2022). Pesticides, crop choices and changes in well-being. Bio-based and Applied Economics, 11(2), 171-184. https://doi.org/10.36253/bae10310.
  11. Gunier, R.B., Harnly, M.E., Reynolds, P., Hertz, A., & Von Behren, J. (2001). Agricultural pesticide uses in California: Pesticide prioritization, use densities, and population distributions for a childhood cancer study. Environmental Health Perspectives, 109(10), 1071-1078. https://doi.org/10.2307/3454963
  12. Hoseini, S. A. (2018). Assessing the environmental effects of pesticides used in the wheat, canola, cotton and soybean fields in Gorgan and Ali Abad Katool townships. College of Plant Production. A Thesis Submitted in Partial Fulfillment of the Requierments for the Degree of M.Se. in Agro-Ecology. Gorgan University of Agriculyural Sciences and Natural Resources, Gorgan, Iran. (in Persian with English abstract)
  13. Ioriatti, C., Agnello, A.M., Martini, F., & Kovach, J. (2011). Evaluation of 330 the environmental impact of apple pest control strategies using pesticide risk indicators. Integrated Environmental Assessment and Management, 7(4), 542-9. https://doi.org/10.1002/ieam.185
  14. Kihanian, A.K., Berari, H., & Taghi Mubasheri, M. (2023). Investigating the efficiency of some new insecticides to control rapeseed fleas. Oilseed Plant Promotion Journal, 3(1), 44-49. (in Persian).
  15. Kovach, J., Petzoldt, C., Degni, J., & Tette, J. (1992). A method to measure the environmental impact of pesticides. New York's Food and Life Sciences. Bulletin 139:1–8. https://hdl.handle.net/1813/55750
  16. Kromann, P., Pradel, W., Cole, D., Taipe, A., & Forbes, G.A. (2011). Use of the environmental impact quotient to estimate health and environmental impact of pesticide usage in Peruvian and Ecuadorian potato production. Journal of Environmental Protection, 2, 581-591. https://doi.org/10.4236/jep.2011.25067
  17. Molaei, M., Javanbakht, O., & Hesari, N. (2017). The estimation input-oriented environmental efficiency of agricultural products (Case study: Environmental efficiency of rice production). Aricultural Economics Journal, 11(2), 157-172. (in Persian with English abstract). https://doi.org/10.22034/IAES.2017.26798
  18. Maleki, L., Sadrabadi Haghighi, R., & Bazregar, A.B. The study of environmental impact quotient (EIQ) of pesticides used in wheat and barley farms in Mashhad. Journal of Agroecology, 7(1), 109-119. (in Persian with English abstract). https://doi.org/10.22067/jag.v7i1.48270
  19. Moeinoddini, S.S., Zand, E., Kambouzia, J., Mahdavi Damghani, A., & Deihim Fard, R. (2014). Environmental risk assessment of registered insecticides in Iran using Environmental Impact Quotient (EIQ) index. Journal of Agroecology, 6(2), 250-265. (in Persian with English abstract). https://doi.org/10.22067/JAG.V6I2.39367
  20. Niazmoradi, M., Kazemi, H., Gherekhloo, J., Soltani, A., & Kamkar, B. (2024). Environmental Impact Quotient (EIQ) evaluation of used pesticides in wheat (Triticum aestivum) fields of Bandar-e-Turkeman county, Golestan province. Journal of Agroecology, 15(4), 809-823. (in Persian with English abstract). https://doi.org/10.22067/AGRY.2022.76161.1106
  21. Norouzi, A., & Shahbazi, I. (2011). The role of extension education in development of organic agriculture in Iranian villages. Journal of Community Development, 2(2), 1-22. (in Persian with English abstract)
  22. Peterson, R.K.D., & Schleier III, J.J. (2014). A probabilistic analysis reveals fundamental limitations with the environmental impact quotient and similar systems for rating pesticide risks. PeerJ, 2(1), e364. https://doi.org/10.7717/peerj.364 .
  23. Prasopsuk, J., Promkhambut, A., Laohasiriwong, S., & Boonthai Iwai, CH. (2020). Risk assessment of pesticide use in Chinese kale cultivation of GAP and conventional practice by EIQ in North-East International Journal of Environmental and Rural Development, 11(2), 7-11.
  24. Ramezani, M. K. (2013). Fate of pesticides and their risks assessment in the environment: A review. Journal of Weeds Research, 5(1), 97-121. (in Persian with English abstract)
  25. Sookhtanlou, M., & Allahyari, M.S. (2021). Farmers’ health risk and the use of personal protective equipment (PPE) during pesticide application. Environmental Science and Pollution Research, 28(4), 1-11. https://doi.org/10.1007/s11356-021-12502-y
  26. Thanh Thuan, N., & Hang, H.T. (2023). Assessment of the health and ecological risks caused by fungicides in Chrysanthemum cultivation by environmental impact quotient. Dalat University Journal of Science, 13(2), 63-75. https://doi.org/10.37569/DalatUniversity.13.2.1079(2023)
  27. Turgut, C., & Erdogan, O. (2005). The environmental risk of pesticide in cotton production in Aegean region, Turkey. Journal of Applied Science, 5(8), 1391-1393. https://doi.org/10.3923/jas.2005.1391.1393
  28. Vaezzadeh, V., Mashinchian Moradi, A., Esmaili Sari, A., & Fatemi, A.M. (2008). Study of organochlorine pesticides in muscle tissue of two commercial fish species (Cyprinus carpio & Rutilus frisii kutum) in Southwest of the Caspian Sea. Environmental Sciences, 5(3), 33-40. (in Persian with English abstract)
  29. Vercruysse, F., & Steurbaut, W. (2002). POCER, the pesticide occupational and environmental risk indicator. Crop Protection, 21, 307-315. https://doi.org/10.1016/s0261-2194(01)00102-8
  30. Yadollahi Nooshabadi, S. J., Jahansuz, M. R., Majnoun Hosseini, N., & Peykani, G. (2017). Evaluation of environmental risks in the use of insecticide in Hashtgerd area using EIQ. Journal of Agroecology
  31. (in Persian with English abstract). https://doi.org/10.22067/JAG.V9I4.50487
CAPTCHA Image