اثر ﺍﺯﺗﻮﺑﺎﮐﺘﺮ ﮐﺮﻭﮐﻮﮐﻮﻡ (Azotobacter chroococcum) و گلوموس اینترارادیسز (Glomus intraradices) بر عملکرد، اجزای عملکرد و جوانه‌زنی بذرهای حاصل تحت شرایط آبیاری تکمیلی در برخی ارقام گندم (Triticum aestivum L.)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانشگاه گنبد کاووس

چکیده

کمبود آب در مراحل انتهایی رشد گندم (Triticum aestivum L.) منجر به تولید بذر بی‌کیفیت می‌شود. کاربرد بی‌رویه کودهای شیمیایی آسیب‌های جدی به محیط زیست وارد می‌کند. به‌منظور بررسی اثر باکتری ازتوباکتر ﮐﺮﻭﮐﻮﮐﻮﻡ (Azotobacter chroococcum) و قارچ میکوریزا گلوموس اینترارادیسز(Glomus intraradices) بر عملکرد، اجزای عملکرد ارقام گندم و جوانه­زنی بذرهای حاصل تحت شرایط آبیاری تکمیلی، آزمایشی با سه تکرار به‌صورت فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی در ایستگاه تحقیقات کشاورزی گرگان (عراقی محله) در سال زراعی 1395-1394 اجرا گردید. عوامل آزمایش شامل دو رقم گندم آبی (20-80-N و گنبد)، شش سطح تلقیح شامل (1) عدم تلقیح به‌عنوان شاهد، (2) تلقیح بذر با قارچ میکوریزا گلوموس اینترارادیسز، (3) تلقیح بذر با باکتری سویه ازتوباکتر کروکوکوم (پودری)، (4) تلقیح با فرم مایع ازتوباکتر کروکوکوم، (5) تلقیح با سویه ازتوباکتر کروکوکوم (پودری) + گلوموس اینترارادیسز، (6) تلقیح با فرم مایع ازتوباکتر کروکوکوم + گلوموس اینترارادیسز) و سه سطح آبیاری تکمیلی (عدم آبیاری، آبیاری در مرحله آبستنی و آبیاری در مرحله گل‌دهی کامل) بود. در این بررسی صفات عملکرد، اجزای عملکرد و جوانه‌زنی بذرهای گندم حاصل مورد مطالعه قرار گرفتند. نتایج نشان داد که تلقیح بذر ارقام گندم با ترکیب توأم ازتوباکتر و میکوریزا اثر معنی‌داری روی عملکرد، اجزای عملکرد و هم‌چنین بهبود مؤلفه­های جوانه‌زنی بذرهای تولیدی گندم داشت. بیش‌ترین عملکرد دانه (33/5987 کیلوگرم در هکتار) در بوته­های حاصل از بذرهای تلقیح شده با گلوموس اینترارادیسز + فرم مایع ازتوباکتر کروکوکوم تحت آبیاری تکمیلی در مرحله گل‌دهی کامل به‌دست آمد. رقم 20-80-N و تلقیح بذر با گلوموس اینترارادیسز + فرم مایع ازتوباکتر کروکوکوم با افزایش 10 درصدی نسبت به شاهد، بالاترین عملکرد دانه را به خود اختصاص داد. درصد و سرعت جوانه­زنی بذور ارقام گندم تحت تأثیر آبیاری تکمیلی به‌طور قابل ملاحظه­ای افزایش یافت. هم‌چنین تلقیح بذر گندم با کودهای بیولوژیک سبب افزایش درصد جوانه­زنی بذور حاصل شد. به‌طوری‌که بالاترین درصد جوانه­زنی در تیمار تلقیح بذر با گلوموس اینترارادیسز + فرم مایع ازتوباکتر کروکوکوم (75/95) حاصل شد. رقم 20-80-N در مقایسه با رقم گنبد نسبت به تلقیح بذر و آبیاری تکمیلی از نظر صفات مورد مطالعه پاسخ بهتری را از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Azotobacter chroococcum and Glomus intraradices on Yield, Yield Components and Germination of Derived Seeds under Supplementary Irrigation in some of Wheat (Triticum aestivum L.) Varieties

نویسندگان [English]

  • Abdolghader Enayati 1
  • morteza barmaki 1
  • Raouf Seyed Sharifi 1
  • Abdollatif Gholizadeh 2
1 University of Mohaghegh Ardabili
2 University of Gonbad kavous
چکیده [English]

Introduction
Water shortage in terminal phases of wheat growth causes low-quality seeds in wheat. Extra use of chemical fertilizer has an adverse effect on the environment. Wheat (Triticum aestivum L.) is very important in Iran grown on 7 million ha of the total national cultivated; irrigated wheat farms accounting for 35% of the total wheat lands. It grows mainly during dry seasons, where irrigation is necessary because precipitation in the growing season is far less than the crop water requirement. Within the arid and semi-arid regions, water available is a major limitation for crop production. Wheat needs sufficient available water and nutrient to achieve optimum yields, quality, and adequate grain-protein content. In recent years, the water shortage has gradually increased in most of the countries mainly due to the annual increasing irrigation and dry climate. Therefore, the present study was undertaken to evaluate the effects of azotobacter and mycorrhiza fungus on yield and yield components of wheat varieties and quality of derived seeds under supplementary irrigation. The present study experiment was conducted as a factorial arranged in a randomized complete block design with three replications in the Research station of Gorgan (Iraqi Mahalle).
Materials and Methods
To evaluate the effect of azotobacter and mycorrihza application on yield, yield components and seed quality of wheat cultivars an experiment was carried out in the Research Station of Gorgan (Iraqi Mahalle). Experimental factors including two irrigated wheat varieties namely N-80-20 and Gonbad Cv., six levels of inoculations (1) non inoculated as control, (2) application of mycorrihza  (G. intraradices), (3) inoculation with powdery A.chroococcum, (4) inoculation with liquid A.chroococcum, (5) inoculation with powdery A.chroococcum+G. intraradices, (6) inoculation with liquid A.chroococcum+G. intraradices, and three levels of supplementary irrigation (non-irrigated, irrigation at booting and irrigation at the full flowering stage). The studied traits were plant height, spike length, number of spikes, number of seed per spike, 1000-seed weight, seed yield, biologic yield, harvest index, seed germination percentage, seed germination rate, seedling length, seedling dry weight and length vigor index. For statistical analysis, analysis of variance (ANOVA) and Duncan’s multiple range test (DMRT) were performed using SPSS and STATISTICA software. The graphs were drawn by excel software.
 
Results and Discussion
Results revealed that inoculation of wheat varieties with a combination of azotobacter and mycorrihza induced seed yield and yield components increment as well as quality improvement of derived seeds. Supplementary irrigation at full flowering phase had more positive effects on traits of wheat varieties. Considering the investigated characteristics, N-80-20 had a better response to seed inoculation and supplementary irrigation comparing to Gonbad cultivar. The maximum seed yield (5987.33 kg.ha-1) was achieved with the application of mycorrihza + liquid azotobacter under supplementary irrigation at full flowering phase of wheat growth.
It seems that application of biological fertilizers and supplementary irrigation is an appropriate and low-cost method for increasing of yield and improvement of seed quality of wheat. Seed inoculation of N-80-20 cultivar with mycorrihza + liquied azotobacter was increased the seed yield 10 percentage compared to control condition. Seed germination percentage and rate of wheat cultivars under supplementary irrigation was significantly increased. The maximum seed germination percentage (95.7%) was observed with the application of mycorrihza + liquied azotobacter. N-80-20 in compared to Gonbad cultivar was demonstrated better response regarding studied traits.
Conclusion
According to the results, in order to increase seed yield and improving seed quality, inoculation of seeds with a joint combination of azotobacter and mycorrihza along with supplementary irrigation at the full flowering stage of wheat could be recommended.

کلیدواژه‌ها [English]

  • Supplementary irrigation
  • Wheat cultivars
  • Biologic fertilizer
  • Seed quality
  • Seed yield
Ahemad, M., and Kibret, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science 26: 1-20.
Amraei, B., Ardakani, M.R., Rafei, M., Paknejad, F., and Rejali, F., 2016. Effect of bio fertilizers (Mycorrhiza and Azotobacter) on yield and agronomic characteristics of different varieties of wheat. Journal of Agronomy and Plant Breeding 12: 1-16. (In Persian with English Summary)
Behl, R.K., Narula, N., Vasudeva, M., Sato, A., Shinano, T., and Osaki, M., 2006. Harnessing wheat genotype x Azotobacter strain interactions for sustainable wheat production in semi-arid tropics. Tropics 15: 121-133.
Beltrano, J., and Ronco, M.G., 2008. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and re-watering by the arbuscular mycorrhiza fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology 20:29-37.
Blum, A., 2005. Drought resistance, water use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive. Australian Journal of Agricultural Research 56: 1159-1168.
Cakmakci, R.I., Donmez, M.F., and Erdogan, U., 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture 31: 189-199.
Chen, J., 2006. The combined use of chemical and organic fertilizers and/or bio fertilizer for crop growth and soilfertility. International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. Bangkok, Thailand. 16-20 October 2006, p. 1-11.
Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R., and Guerrieri, E., 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology 171: 1009-1023.
Elias, S.G., Garary, A., Schweitzer, L., and Hanning, S., 2006. Seed quality testing of native species. Native Plant Journal 7: 15-19.
Ellis, R.H., and Roberts, E.H., 1981. The quantification of aging and survival in orthodox seeds. Seed Science Technology 9: 373-409.
Food and Agriculture Organization (FAO)., 2016. The FAOSTAT Database. Available at Web site http://faostat.fao.org/default.aspx
George, R.A.T., 2009. Vegetable seed production. CABI Publishing, Cambridge.
Gharine, M.H., Bakhshande, A., and Ghassemi-Golezani, K., 2005. Study of drought stress and different harvest times on seed vigor and germination of wheat seeds under Ahvaz climate. Scientific Journal of Agriculture 27: 65-76. (In Persian with English Summary)
Ghorbani, M.H., and Porfarid A., 2008. The effect of salinity and sowing depth on wheat seed emergence. Journal of Agricultural Sciences and Natural Resources 14: 1-8. (in Persian with English Summary)
Habibzadeh, Y., 2015. Arbuscular mycorrhizal fungi in alleviation of drought stress on grain yield and yield components of mung bean (Vigna radiata L.) plants. International Journal of Sciences 4: 34-40.
Harris, H.C., 1991. Implications of climate variability. In: Harris HC, Cooper PJM and Pala M (Eds.) Soil and crop management for improved water use efficiency in rain-fed areas. Proceedings of an International Workshop, Ankara, Turkey, 1989, ICARDA, Alepo, Syria. 352 p.
HongBo, S., ZongSon, L., Ming-An S., Shi-Meng, S., and Zan-Min S., 2005. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Colloids and Surface B: Biointerfaces 43: 221-227.
Idris, M., 2003. Effect of integrated use of mineral, organic N and Azotobacter on the yield, yield components and N-nutrition of wheat (Triticum aestivum). Pakistan Journal Biological Science 6: 539-543.
Jiriaie, M., Fateh, E., and Aynehband, A., 2014. Evaluation the morph physiological changes in wheat cultivars from the use of Mycorrhiza and Azospirillum. Iranian Journal of Field Crops Research 12: 841-851. (In Persian with English Summary)
Karimi, M.M., and Siddique, K.H.M., 1991. Crop growth and relative growth rates of old and modern wheat cultivars. Australian Journal of Agricultural Research 42: 13-20.
Kiani, A., and Nournia, A.A., 2015. An investigation of rainfall and supplementary irrigation productivity in some wheat cultivars. Journal of Water and Soil Conservation 21: 155-173. (In Persian with English Summary)
Malakouti, M.J., and Tehrani, M.M., 1999. Role of micronutrient in yield increasing and improvement quality of crops. Tarbiat Modarres University Publication, Tehran, Iran. (In Persian)
Maleki, A., Majidi-Heravan, M., Heidari Sharif Abad, H., and Nourmohamadi, G., 2009. Drought resistance of different bread wheat genotypes under irrigated and non-irrigated conditions. Agroecology Journal 5: 1-114. (In Persian with English Summary)
Millar, N.S., and Bennett, A.E., 2016. Stressed out symbioses: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182: 625-641.
Milosevic, N., Tintor1, B., Protic, R., Cvijanovic, G., and Dimitrijevic, T., 2012. Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Romanian Biotechnological Letters 17: 7352- 7357.
Oweis, T., 1997. Supplemental irrigation: a highly efficient water- use practice. ICARDA, Aleppo, Syria.
Pradhan, G.P., Xue, Q., Liu, S., Rudd, J.C., and Jessup, K.E., 2014. Effective use of soil water contributed to high yield in wheat in the US southern high plains. Journal of Arid Land Studies 24: 153-156.
Rajaee, S., Alikhani, H., and Urisi, F., 2007. Growth simulator effects of Azotobacter strains on growth, yield and nutrient uptake in wheat. Agricultural Science and Methods 41:285-296. (In Persian with English Summary)
Roustaii, M., 2015. Effect of supplementary irrigation on grain yield and some agronomic traits of bread wheat genotypes in Maragheh conditions of Iran. Seed and Plant Improvement Journal 1: 1-31. (In Persian with English Summary)
SeyedSharifi, R., and Heidari, M.S., 2016. Effects of biofertilizers on growth indices and contribution of dry matter remobilization in wheat grain yield. Journal of Plant Research 28: 326-343. (In Persian with English Summary)
SeyedSharifi, R., Lotfollah, F., and Kamari, H., 2017. Evaluation of effects of Azotobacter, Azospirillum and Psedomunas inoculation and spraying of nitrogen on fertilizer use efficiency and growth of triticale. Journal of Soil Management and Sustainable 5: 115-132. (In Persian with English Summary)
Shahsavari, A., Pirdashti, H., Mottaghian, A., and TajickGhanbary, M., 2011. Response of growth characters and yield of wheat (Triticum aestivum L.) to co-inoculation of farmyard manure, Trichoderma spp. and Psudomunas spp. Journal of Agroecology 2: 448-458. (In Persian with English Summary)
Sharma, A.K., and Johri, B.N., 2002. Arbuscular mycorrhiza, interaction in plants, rhizosphere and soils. Oxford and IBH publishing, New Delhi.
Singh, R., Behl, R.K., Singh, K.P., Jain, P., and Narula, N., 2004. Performance and gene effects for wheat yield under inoculation of arbuscular mycorrhiza fungi and Azotobacter chroococcum. Plant, Soil and Environment 50: 409-415.
Suri, V.K., Choudhary, A.K., Chander, G., and Verma, T.S., 2011. Influence of vesicular arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid alfisol of western himalayas. Communications in Soil Science and Plant Analysis 42: 1177-1186.
Tari, A.F., 2016. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agricultural Water Management 167: 1-10.
Tatari, M., Ahmadi, M.M., and Abbasi Ali Kamar, R., 2012. Effect of supplementary irrigation on growth and yield of wheat. Iranian Journal of Field Crops Research 10: 448-455 (In Persian with English Summary)
Tavakkoli, A., 2004. Effects of supplemental irrigation and nitrogen rates on yield and yield components of rainfed wheat cultivar Sabalan. Plant and Seed 19: 367-381. (In Persian with English Summary)
Tavakkoli, A.R., and Owise, T.Y., 2004. The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran. Agricultural Water Management 65: 225-236.
Tinca, G. Munteanu, N., Paduraru, A., Podaru, M., and Teliban, G., 2009. Optimization of certain technological measure for hyssop (Hysspus officinalis) crops in the ecological condition. Revista Lucrări ştiinţifice. Seria Agronomie 52: 86-89.
Tinglu, F., Stewart, B.A., William, A.P., Yong, W., Shangyou, S., Junjie, L., and Clay, A.R., 2005. Supplemental irrigation and water-yield relationships for plasticulture crops in the LoessPlateau of China. Agronomy Journal 97: 177-188.