بررسی و مطالعه جریان انرژی و انتشار گازهای گلخانه‌ای در نظام‌های تولید محصولات زراعی و باغی (مطالعه موردی: دشت شریف‌آباد)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی

2 دانشگاه شهید بهشتی تهران

چکیده

استفاده بهینه از منابع و نهاده‌ها یکی از اولین و اساسی‌ترین اهداف کشاورزی پایدار به شمار می‌رود. در پژوهش حاضر، جریان انرژی و انتشار گازهای گلخانه‌ای در محصولات زراعی (اعم از یکساله و چندساله) و باغی عمده دشت شریف‌آباد استان قم شامل گندم (Triticum aestivum L.)، جو (Hordeum vulgare L.)، کلزا (Brassica napus L.)، یونجه (Medicago sativa L.)، ذرت علوفه‌ای (Zea mays L.)، پنبه (Gossypium hirsutum L.)، انار (Punica granatum L.)، انگور (Vitis vinifera L.) و پسته (Pistacia vera L.) مورد ارزیابی قرار گرفت. بدین منظور، اطلاعات مورد نیاز تحقیق با استفاده از پرسشنامه و مصاحبه حضوری با 183 کشاورز منطقه در سال 1397 به دست آمد. شاخص‌های انرژی ورودی، انرژی خروجی، انرژی خالص، انرژی مخصوص، کارایی مصرف انرژی، بهره‌وری انرژی، اشکال مختلف انرژی و پتانسیل گرمایش جهانی محاسبه گردید. نتایج نشان داد که در بین محصولات مورد مطالعه، بیشترین انرژی در فرایند تولید محصولات یونجه، انار و انگور به ترتیب با 94906، 79696 و 78984 مگاژول در هکتار بوده و بیشترین انرژی خروجی نیز به ترتیب متعلق به محصولات یونجه (218567 مگاژول در هکتار)، ذرت علوفه‌ای (171810 مگاژول در هکتار) و گندم (123430 مگاژول در هکتار بود. بیشترین کارایی مصرف انرژی مربوط به محصولات جو (9/2)، ذرت علوفه‌ای (8/2) و گندم (6/2) بوده و کمترین آن به ترتیب برای محصولات پسته (34/0)، انار (48/0) و پنبه (9/0) محاسبه گردید. محصولات پسته (7/72 مگاژول بر کیلوگرم)، پنبه (1/27 مگاژول بر کیلوگرم) و کلزا (7/20 مگاژول بر کیلوگرم) به ازای تولید هر کیلوگرم محصول انرژی بیشتری نسبت به سایر محصولات مورد استفاده قرار دادند و کمترین آن مربوط به محصولات ذرت علوفه‌ای (5/1 مگاژول بر کیلوگرم)، انار (5 مگاژول بر کیلوگرم) و یونجه (8/6 مگاژول بر کیلوگرم) بود. نتایج نشان داد که در نظام تولید محصولات مورد مطالعه، سهم انرژی مستقیم (شامل نیروی انسانی، سوخت دیزلی، آب آبیاری و الکتریسیته) بیش از انرژی غیرمستقیم (شامل بذر، کودهای شیمیایی، کود حیوانی، آفت‌کش‌ها و ماشین‌آلات) و سهم انرژی‌های تجدیدناپذیر (الکتریسیته، کودهای شیمیایی، سوخت دیزلی، آفت‌کش‌ها و ماشین‌آلات) بیش از انرژی تجدیدپذیر (نیروی انسانی، بذر، آب آبیاری و کود دامی) بود. کشت‌بوم‌های یونجه (معادل 12294کیلوگرم معادل CO2 در هکتار)، انار (معادل 10484کیلوگرم CO2 در هکتار) و انگور (معادل 10085 کیلوگرم CO2 در هکتار) به ترتیب بیشترین مقدار پتانسیل گرمایش جهانی را داشته و کمترین آن متعلق به محصولات جو (معادل 4019 کیلوگرم CO2 در هکتار)، کلزا (معادل 4285 کیلوگرم CO2 در هکتار) و گندم (معادل 4542  کیلوگرم CO2 در هکتار) بود. نتایج نشان داد که در بیشتر محصولات، الکتریسیته، گازوئیل و نیتروژن بیشترین سهم را در انرژی ورودی و انتشار گازهای گلخانه‌ای ایفا می‌کنند. بنابراین، مدیریت بهینه آبیاری برای افزایش کارایی مصرف آب و استفاده از عملیات زراعی مناسب مانند کشت کود سبز یا قرار دادن محصولات لگوم برای افزایش حاصلخیزی خاک به جای استفاده از کودهای شیمیایی می‌تواند به افزایش بهره‌وری انرژی و کاهش انتشار گازهای گلخانه‌ای کمک کند.

کلیدواژه‌ها


عنوان مقاله [English]

Energy Flow and GHG Emissions in Major Field and Horticultural Crop Production Systems (Case Study: Sharif Abad Plain)

نویسندگان [English]

  • J Vafabakhsh 1
  • Arash Mohammadzadeh 2
2 University of Shahid Beheshti
چکیده [English]

Introduction[1]
Energy use patterns and Green House Gas (GHG) emissions from agro-ecosystems vary depending on the farming system; cropping pattern; crop season; the level of technology; the size of the population engaged in agriculture; nature and amount of chemical fertilizer; harvesting and threshing operations; and ultimately yield levels. Worldwide, about 5% of the total energy is used in agriculture section that is directly linked to GHGs emissions. According to reports, agricultural GHG emissions account for 10–12% of all anthropogenic GHG emissions. Therefore, efficient use of energy in farming systems is one of the most important implications for decreasing GHG emissions and mitigating global warming. A good understanding of energy flow and GHG emissions in agricultural production systems will help to optimize crop management practices thereby reducing the environmental footprints of energy inputs and promoting sustainable agriculture. This paper describes the energy use patterns and global warming potential for major crop production systems in Sharif Abad plain located in Qom province, Iran.
Materials and methods
The study area relates to the Sharif Abad plain, located in the Qom province in north-central Iran. The data were collected through face-to-face interviews with 183 farmers in the year 2018. A questionnaire form was designed to collect the required information related to various input uses (electricity, biocides, fertilizers, etc.), operation times, crop yields, etc. The selection of producers was based on cropping patterns and the fact that the farmers should be representative of the selected crops. The simple random sampling method was used to determine the survey volume. The studied field crops and horticultural crops were wheat (Triticum aestivum. L.), barley (Hordeum vulgare L.), alfalfa (Medicago sativa L.), corn silage (Zea mays L.), cotton (Gossypium hirsutum L.), canola (Brassica napus L.), pistachio (Pistacia vera L.), pomegranate (Punica granatum L.) and grape (Vitis vinifera L.). In the present study, input and output values for perennial crops (alfalfa, pistachio, pomegranate, and grape) are represented as averages of the crop production cycle.
Results and discussion
Results showed that, in terms of total energy input, alfalfa (94,906 MJ.ha−1), pomegranate (79,696 Mj.ha−1), and grape (78,984 MJ.ha−1) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of output energy were related to alfalfa (218,567 MJ.ha−1), corn silage (171,810 MJ.ha−1) and wheat (123,430 MJ.ha−1) production systems, respectively. Also, it was observed that the highest values of energy use efficiency and specific energy were related to barley (2.9) and cotton (72.7 MJ.kg−1), respectively. Among all the studied crops, the highest values of global warming potential were calculated to be 12,294 kg CO2eq ha−1 for the alfalfa production system followed by the pomegranate (10,484 kg CO2eq ha−1) and grape (10,085 kg CO2eq ha−1) production systems. In the average of all crops, electric power accounted for the greatest GHG emissions, followed by diesel and nitrogen fertilizer. The proportion of direct energy (human labor, diesel fuel, water for irrigation, and electricity) in the studied crops was greater than the indirect form (seed, chemical fertilizer, manure, pesticides, and machinery). Also, the amount of non-renewable energy (electricity, chemical fertilizer, diesel fuel, pesticides, and machinery) in all the investigated crops was higher than of the renewable form (human labor, seed, water for irrigation and manure).
Conclusion
It can be inferred from the present study that in all of studied crops, notable part of energy used and GHG emissions were related to electric power. In the study area, entire electrical power is consumed in irrigation practices. Therefore, optimal management of water and nitrogen in crop production systems are the ways that should be considered to improve energy performance and decrease the GHG emissions. Also, management of plant nutrients by renewable resources like farmyard manure and green manures would increase rate of renewable energy.
 

کلیدواژه‌ها [English]

  • Agroecosystem analysis
  • Energy Efficiency
  • Global warming
  • Sharif Abad plain
Acaroglu, M. 1998. Energy from biomass, and applications. University of Selcuk, Graduate School of Natural and Applied Sciences, Turkey. 43 pp.
Asgharipour, M.R., Mousavinik, S.M., andEnayat, F.F. 2016. Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports 2: 135-140.
Azizi, K., and Heidari, S. 2013. A comparative study on energy balance and economical indices in irrigated and dry land barley production systems. International Journal of Environmental Science and Technology 10: 1019-1028.
Bartzas, G., and Komnitsas, K. 2017. Life cycle analysis of pistachio production in Greece. Science of the Total Environment 595: 13-24.
Beheshti Tabar, I., Keyhani, A., and Rafiee, S. 2010. Energy balance in Iran's agronomy (1990–2006). Renewable and Sustainable Energy Reviews 14: 849-855.
Boshrabadi, H., and Naghavi, S. 2011. Estimating energy demand in agricultural sector of Iran. Journal of Agricultural Economics Research 3: 147-162.
Camargo, G.G., Ryan, M.R., and Richard, T.L. 2013. Energy use and greenhouse gas emissions from crop production using the farm energy analysis tool. BioScience 63: 263-273.
Canakci, M., Topakci, M., Akinci, I., and Ozmerzi, A. 2005. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management 46: 655-666.
De, D., Singh, R., and Chandra, H. 2001. Technological impact on energy consumption in rainfed soybean cultivation in Madhya Pradesh. Applied Energy 70: 193-213.
Ghasemi Mobtaker, H., Akram, A., and Keyhani, A. 2010a. Investigation of energy consumption of perennial Alfalfa production-Case study: Hamedan province. Journal of Food, Agriculture and Environment 8: 379-381.
Ghasemi Mobtaker, H., Akram, A., and Keyhani, A. 2012. Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development 16: 84-89.
Ghasemi Mobtaker, H., Keyhani, A., Mohammadi, A., Rafiee, S., and Akram, A. 2010b. Sensitivity analysis of energy inputs for barley production in Hamedan province of Iran. Agriculture, Ecosystems and Environment 137: 367-372.
Hatirli, S.A., Ozkan, B., and Fert, C. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy 31: 427-438.
Herrhz, J.L., Girth, V.S., and Cerisola, C. 1995. Long-term energy use and economic evaluation of three tillage systems for cereal and legume production in central Spain. Soil and Tillage Research 35: 183-198.
Houshyar, E., Mahmoodi-Eshkaftaki, M., and Azadi, H. 2017. Impacts of technological change on energy use efficiency and GHG mitigation of pomegranate: Application of dynamic data envelopment analysis models. Journal of Cleaner Production 162: 1180-1191.
IPCC. 1995. Climate Change, the Science of Climate Change. In: Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (Eds). Intergovernmental panel on climate change. Cambridge: Cambridge University Press.
Jadidi, M., Sabouhi Sabouni, M., Homayounifar, M., and Mohammadi, A. 2012. Assessment of energy use pattern for tomato production in Iran: A case study from the Marand region. Research in Agricultural Engineering 58: 50-56.
Karimi, M., and Moghaddam, H. 2018. On-farm energy flow in grape orchards. Journal of the Saudi Society of Agricultural Sciences 17: 191-194.
Kazemi, H., Shokrgozar, M., Kamkar, B., and Soltani, A. 2018. Analysis of cotton production by energy indicators in two different climatic regions. Journal of Cleaner Production 190: 729-736.
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., and Movahedi, M. 2013. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333-338.
Kitani, O. 1999. CIGR Handbook of Agricultural Engineering. American Society of Agricultural Engineers, United States of America.
Koga, N., and Tajima, R. 2011. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan. Journal of Environmental Management 92: 967-973.
Kramer, K.J., Moll, H.C., and Nonhebel, S. 1999. Total greenhouse gas emissions related to the Dutch crop production system. Agriculture, Ecosystems and Environment 72: 9-16.
Külekçi, M., and Aksoy, A. 2013. Input–output energy analysis in pistachio production of Turkey. Environmental Progress and Sustainable Energy 32: 128-133.
Lal, R. 2004. Carbon emission from farm operations. Environment International 30: 981-990.
Li, T., Baležentis, T., Makutėnienė, D., Streimikiene, D., and Kriščiukaitienė, I. 2016. Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Applied Energy 180: 682-694.
Mandal, K., Saha, K., Ghosh, P., Hati, K., and Bandyopadhyay, K. 2002. Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass and Bioenergy 23: 337-345.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S. 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724-733.
Mohammadi, H., and Mehry, M. 2015. An analysis of improving energy use with data envelopment analysis in horticultural products in Yazd province: Case study Pistahio. Energy Economics Review 11: 113-134.
Mohammadzadeh, A., Damghani, A.M., Vafabakhsh, J., and Deihimfard, R. 2017. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Environmental Science and Pollution Research 24: 16971-16984.
Mohammadzadeh, A., Mahdavi Damghani, A., Vafabakhsh, J., and Deihimfard, R. 2018. Ecological– economic efficiency for alfalfa (Medicago sativa L.) and corn silage (Zea mays L.) production systems: Maragheh– Bonab plain, east Azerbaijan province. Journal of Agroecology 10: 875-895. (In Persian with English Summary)
Mondani, F., Khoramivafa, M., Aleagha, S., and Ghobadi, R. 2015. Assessment of energy flow in irrigated and dry-land wheat farms under different climatic conditions in Kermanshah province. Journal of Agroecology 5: 75-88. (In Persian with English Summary)
Mousavi-Avval, S.H., Rafiee, S., Jafari, A., and Mohammadi, A. 2011a. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production 19: 1464-1470.
Mousavi-Avval, S.H., Rafiee, S., Jafari, A., and Mohammadi, A. 2011b. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 36: 2765-2772.
Nagy, C.N. 1999. Energy coefficients for agriculture inputs in western Canada. Canadian Agricultural Energy End-Use Data Analysis Centre (CAEEDAC). University of Saskatchewan, Saskatoon, Canada.
Pimentel, D. 1980. Handbook of energy utilization in agriculture. CRC Press, Boca Raton, FL.
Pishgar-Komleh, S., Ghahderijani, M., and Sefeedpari, P. 2012a. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner production 33: 183-191.
Pishgar-Komleh, S., Sefeedpari, P., and Ghahderijani, M. 2012b. Exploring energy consumption and CO2 emission of cotton production in Iran. Journal of Renewable and Sustainable Energy 4: 033115.
Pishgar Komleh, S., Keyhani, A., Rafiee, S., and Sefeedpary, P. 2011. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 36: 3335-3341.
Platis, D.P., Anagnostopoulos, C.D., Tsaboula, A.D., Menexes, G.C., Kalburtji, K.L., and Mamolos, A.P. 2019. Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry. Sustainability 11: 1664.
Rajabi Hamedani, S., Keyhani, A., and Alimardani, R. 2011. Energy use patterns and econometric models of grape production in Hamadan province of Iran. Energy 36: 6345-6351.
Rajabi, M.H., Soltani, A., Vahidnia, B., Zeinali, E., and Soltani, E. 2012. Evaluation of fuel consumption in wheat fields in Gorgan. Environmental Science 9: 143-164.
Rajaby, M.H., Soltani, A., Zeinali , E., and Soltani, E. 2012. Evaluation of energy use in wheat production in Gorgan. Journalof of Plant Production 19: 143-172. (In Persian with English Summary)
Rasouli, M., Namdari, M., and Mousavi-Avval, S.H. 2014. Modeling and analysis of energy efficiency in grape production of Iran. Journalof Agricultural Technology 10: 517-532.
Sahabi, H., Feizi, H., and Amirmoradi, S. 2013. Which crop production system is more efficient in energy use: wheat or barley? Environment, development and sustainability 15: 711-721.
Sahabi, H., Feizi, H., and Karbasi, A. 2016. Is saffron more energy and economic efficient than wheat in crop rotation systems in northeast Iran? Sustainable Production and Consumption 5: 29-35.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E., Haberl, H., Harper, R., House, J., and Jafari, M. 2014. Agriculture, Forestry and Other Land Use (AFOLU). Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Snyder, C., Bruulsema, T., Jensen, T., and Fixen, P. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133: 247-266.
Soltani, A., Maleki, M., and Zeinali, E. 2014. Optimal crop management can reduce energy use and greenhouse gases emissions in rainfed canola production. International Journal of Plant Production 8: 587-604.
Tsatsarelis, C., and Koundouras, D. 1994. Energetics of baled alfalfa hay production in northern Greece. Agriculture, Ecosystems and Environment 49: 123-130.
Tzilivakis, J., Warner, D., May, M., Lewis, K., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85: 101-119.
Unakitan, G., Hurma, H., and Yilmaz, F. 2010. An analysis of energy use efficiency of canola production in Turkey. Energy 35: 3623-3627.
Yilmaz, I., Akcaoz, H., and Ozkan, B. 2005. An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy 30: 145-155.
Yousefi, M., Damghani, A.M., and Khoramivafa, M. 2016. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Environmental Science and Pollution Research 23: 7390-7397.
Yousefi, M., and Mohammadi, A. 2011. Economical analysis and energy use efficiency in alfalfa production systems in Iran. Scientific Research and Essays 6: 2332-2336.
Zangeneh, M., Omid, M., and Akram, A. 2010. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35: 2927-2933.