مستندسازی فرآیند تولید و تحلیل عوامل محدودکننده عملکرد ارقام اصلاح‌ شده برنج (Oryza sativa L.) به روش CPA در منطقه نکا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه آزاد، واحد گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشگاه آزاد اسلامی، واحد گرگان

4 پژوهشکده بیوتکنولوژی کشاورزی کرج

چکیده

کمی‌سازی خلاء عملکرد برنج (Oryza sativa L.) برای دانستن امکان رسیدن به عملکرد بالاتر و برنامه‌ریزی‌های مناسب ضرورت دارد. بنابراین، این پژوهش با هدف مستندسازی فرآیند تولید و برآورد خلاء عملکرد برنج مرتبط با مدیریت زراعی ارقام اصلاح شده برنج در منطقه نکا واقع در استان مازندران انجام شد. به این منظور در این پژوهش کلیه عملیات‌ مدیریتی انجام شده از مرحله تهیه بستر بذر تا برداشت در 100 مزرعه از طریق مطالعات میدانی طی سال‌های 1394 و 1395 ثبت شد. نتایج نشان داد که از حدود 150 متغیر مورد بررسی، مدل نهایی با هشت متغیر مستقل انتخاب شد. در مدل عملکرد، متوسط و حداکثر عملکرد به‌ترتیب 7194 و 9241 کیلوگرم در هکتار تخمین زده شد. متوسط و حداکثر عملکرد مشاهده شده در مزرعه نیز برابر 7178 و 8200 کیلوگرم در هکتار بود. کل خلاء عملکرد تخمین زده شده برابر 2047 کیلوگرم در هکتار بود. میزان افزایش عملکرد مربوط به متغیرهای تناوب زراعی و بذر گواهی شده به ترتیب برابر 111 و 141 کیلوگرم در هکتار بود. مقدار افزایش عملکرد مربوط به اثر کود سرک و پتاسیم مصرفی نیز به‌ترتیب برابر 327 و 674 کیلوگرم در هکتار معادل 16 و 33 درصد از کل خلاء عملکرد بود. همچنین، میزان افزایش عملکرد مربوط به متغیر مصرف نیتروژن بعد از گلدهی و محلول‌پاشی ریزمغذی‌ها به‌ترتیب برابر 324 و 214 کیلوگرم در هکتار معادل 16 و 10 درصد از کل خلاء عملکرد بود. میزان خسارت عملکرد ناشی از دو متغیر پیش‌کاشت کلزا و تاریخ بذرپاشی در خزانه به‌ترتیب برابر دو و 11 درصد از کل افزایش عملکرد (34 و 223 کیلوگرم در هکتار) بود. بنابراین، بر اساس برازش رابطه بین عملکرد مشاهده شده و عملکرد پیش‌بینی شده می‌توان بیان کرد که دقت مدل (معادله تولید) مناسب بوده و می‌تواند برای برآورد میزان خلاء عملکرد و تعیین سهم هر یک از متغیرهای محدود‌ کننده عملکرد به‌کار گرفته شود. لذا، مدیریت زراعی هشت متغیر وارد شده در معادله تولید در مزارع کشاورزان می‌تواند منجر به افزایش عملکرد و کاهش خلاء عملکرد شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Potential Yield and Yield Gap Associated with Crop Management in Improved Rice Cultivars in Neka Region

نویسندگان [English]

  • Ahmad Gorjizad 1
  • Afshin Soltani 2
  • Salman Dastan 3
  • Hosein Ajam Norouzi 4
1 Azad Gorgan
2 Gorgan university
3 ABRII
4 Azad Gorgan
چکیده [English]

Introduction[
Rice (Oryza sativa L.) is the staple food of more than half of the world’s population and has an obvious effect in feeding, income and job creation of people in the world especially, Iran. The rice cultivation area in the world during the past years has been from 145 million hectares to over 160 million hectares. The last global statistics showed that paddy yield and white rice production were 742 and 492.2 million tons respectively in 2014. The same amount is predicted for 2016. Yield gap analysis is providing a little estimation of increased production capacity which is one important component in designing food providing strategy in regional, national scale and world-wide surface. Due to the existing anxiety about discussions of food security, studies are also increasing globally and in Iran is necessary to estimate the quantity of yield gap and the reasons behind it by appropriate statistical methods, or in other words, detecting the restricting parameters of potential yield. As it was mentioned several factors prevent farmers to reach attainable yield in many crops. It seemed that by defining the effectiveness of each management parameters on the amount of presented yield gap and consequently farmer’s knowledge on that matter, the distance between actual yield and attainable yield can be reduced. In this research estimation of potential yield, yield gap and determining yield restricting factors and each of their portions in creating yield gap is investigated.
 
Material and Methods
The research was done in 100 paddy fields between the Alborz Mountains range and the Caspian Sea in 2016. In this research, all managerial operations from nursery preparation to harvest for modified rice cultivars were recorded through field studies in Neka, Mazandaran, Iran from 2015-2016. All farm cases are pertaining to improved cultivars. The improved rice cultivars were Shiroodi, Neda, Fajr, Ghaem, Khazar, and Nemat, respectively.
Field identifications were done in a way that includes all main production procedure in a specific region with variation in management viewpoint. For defining the yield model (production model), the relationship between all measured variables and the final model was designed by controlled trial and error method. The final model was obtained through the controlled trial and error method, which can quantify the effect of yield limitations. The average paddy yield was calculated by the model by placing the observed average variables (Xs) in the fields under study in the yield model. Thereafter, by putting the best-observed value of the variables in the yield model, the maximum obtainable yield was calculated. The difference between these two has been considered as yield gap. Different procedures of the software SAS version 9.1 were used for analysis.
 
Results and Discussion
Data analysis revealed that seed consumption was varied from 30 to 120 kg.ha-1. The range of seedling age variable was from 20 to 60 days old. In 100 paddy fields planting density were 16 to 40 plants per m2. Nitrogen usage by 26% of farmers was among 69 to 92 kg.ha-1 and 16% of the farmers consumed 92 to 115 kg N per hectare. Potassium application was varied from 0 to 100 kg K ha-1 which within 60% of the field’s potassium usage was less than 35 kg K ha-1. The range of paddy yield in 100 paddy fields was varied from 6100 to 8200 kg.ha-1 that in 40% of the studied fields, the paddy yield was from 7000 to 7600 kg.ha-1. In the CPA model, the paddy yield increasing related to the effect of N top dressing, K usage and N usage after flowering was 327, 674 and 324 kg.ha-1.
Conclusion
Therefore, the actual yield and yield potential were estimated to be 7194 and 9241 kg.ha-1, respectively and the yield gap was 2047 kg.ha-1. Therefore, regarding the fact that calculated potential yield was reached through actual data in each paddy field, it has been stated that this yield potential is attainable.
 
 

کلیدواژه‌ها [English]

  • Attainable yield
  • cpa
  • documentation
  • Management factors
  • Rice
Aghagolzadeh, H. 2010. Rice guide (Harvesting and Post-harvest). Agricultural Research, Education and Extension Organization (AREEO). Staff Training Office (STO), Agricultural Education Publisher 220 pp. (In Persian)
Amiri Larijani, B. 2010. Rice guide (Land Preparation and Planting). Agricultural Research, Education and Extension Organization (AREEO). Staff Training Office (STO), Agricultural Education Publisher 1: 179. (In Persian)
Amiri Larijani, B., Aghagolzadeh, H., and Ramzanpour, Y. 2010. Rice guide (Land Preparation and Planting). Agricultural Research, Education and Extension Organization (AREEO). Staff Training Office (STO), Agricultural Education Publisher 2: 170. (In Persian)
Bruinsma, J. 2009. The resource outlook to 2050: by how much do lamd, water and crop yields meed to increase by 2050? FAO Expert Meeting on How to Feed the World in 2050. Rome.
Dastan, S., Noormohamadi, G., Madani, H., and Soltani, A. 2015. Analysis of Energy Indices in Rice Production Systems in the Neka Region. Journal of Environmental Sciences 13(1): 53-66. (In Persian with English Summary)
Dastan, S., Soltani, A., and Alimagham, M. 2017. Documenting the process of local rice cultivars production in two conventional and semi-mechanized planting methods in Mazandaran province. Cereal Research 7(4): 485-502. (In Persian with English summary)
De Bie, C.A.J.M. 2000. Yield gap studies through comparative performance analysis of agro-ecosystems. International Institute for Aerospace and Earth Science (ITC), Enschede. The Netherlands, 234 p.
Delmotte, S., Tittonell, P., Moureta, J.C., Hammonda, R., and Lopez-Ridaura, S. 2011. On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. European Journal of Agronomy 35: 223-236.
Espe, M.B., Yang, H., Cassman, K.G., Guilpart, N., Sharifi, H., and Linquist, B.A. 2016a. Estimating yield potential in temperate high-yielding, direct-seeded US rice production systems. Field Crops Research 193: 123-132.
Espe, M.B., Cassman, K.G., Yang, H., Guilpart, N., Grassini, P., Van Wart, J., Anders, M., Beighley, D., Harrell, D., Linscombe, S., McKenzie, K., Mutters, R., Wilson, L.T., and Linquist, B.A. 2016b. Yield gap analysis of US rice production systems shows opportunitiesfor improvementMatthew. Field Crops Research 196: 276-283.
Habibi, E., Niknejad, Y., Fallah, H., Dastan, S., and Barari, D. 2019a. Estimation of yield gap of rice by comparative performance analysis (CPA) in the Amol and Rasht regions. Journal of Plant Production. In Pess (In Persian with English Summary)
Habibi, E., Niknejad, Y., Fallah, H., Dastan, S., and Barari, D. 2019b. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environmental Monitoring and Assessment 191:202.
Haghshenas, H., Soltani, A., Ghanbari, A., Ajamnoroozi, H., and Dastan, S. 2018. Identification of effective agronomic traits on yield of local rice cultivars using multiple regression models. Journal of Agroecology 8(2): 13-28. (In Persian with English Summary)
Hajarpoor, A., SoltanI, A., and Torabi, B. 2015. Using boundary line analysis in yield gap studies: Case study of wheat in Gorgan. Electronic Journal of Crop Production 8(4): 183-201. (In Persian with English Summary)
Halalkhor, S., Dastan, S., Soltani, A., and Ajam Norouzi, H. 2018. Documenting the process of rice production and yield gap associated with crop management in local cultivars of rice production (case study: Mazandaran province, Babol region). Agricultural Crop Management 19(3): 397-414. (In Persian with English summary)
Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., Garcia, K.N., and Horan, H. 2013. Reprint of Quantifying yield gaps in rain-fed cropping systems: A case study of wheat in Australia. Field Crops Research 143: 65-75.
Kayiranga, D. 2006. The effects of land factors and management practices on rice yields. International Institute for Geo-Information Science and Earth Observation Enscheda (ITC).The Netherlands.72 p.
Kamkar, B., Koochaki, A., Nasiri Mahalati, M., and Rezvani Moghaddam P. 2007. Yield gap analysis of cumin in nine regions of Khorasan province using modeling approach. Iranian Journal of Field Crops Research 5(2): 333-341. (In Persian with English Summary)
Lobell, D.B., Cassman, K.G., and Field, C.B. 2009. Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34: 179-204.
Majidi, F., and Padasht, F. 2010. Rice guide (Pests and Diseases). Agricultural Research, Education and Extension Organization (AREEO). Staff Training Office (STO), Agricultural Education Publisher 150p. (In Persian)
Mirkamali, H. 2010. Guide to weeds in rice fields and the control methods. Agricultural Research, Education and Extension Organization (AREEO). Staff Training Office (STO), Agricultural Education Publisher 214p. (In Persian)
Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., and Foley, J.A. 2012. Closing yield gaps through nutrient and water management. Nature 490: 254-257.
Nezamzadeh, E., Dastan, S., Soltani, A., and Ajam Norouzi, H. 2019. Evaluation of yield gap associated with crop management in rapeseed production using comparative performance analysis (CPA) and boundary-line analysis (BLA) methods in Neka region. Applied Field Crops Research. In Press. (In Persian with English Summary)
Rajapakse, D.C., 2003. Biophysical factors defining rice yield gaps. International Institute for Geo-Information Science and Earth Observation Enschede (ITC).The Netherlands. 80 p.
Silva, J.V., Reidsma, P., Laborte, A.G., and van Ittersum, M.K. 2017. Explaining rice yields and yield gaps in Central Luzon, Philippines: An application of stochastic frontier analysis and crop modeling. European Journal of Agronomy 82: 223-241.
Soltani, A., and Maddah, V. 2010. Simple applications for agriculture education and research. Agroecology Association, University of Shahid Beheshti, Tehan, Iran 80 p. (In Persian)
Soltani, A., Hajjarpoor, A., and Vadez, V. 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research 185: 21-30.
Tanaka, A., Diagne, M., and Saito, K. 2015. Causes of yield stagnation in irrigated lowland rice systems in the Senegal River Valley: Application of dichotomous decision tree analysis. Field Crops Research 176: 99-107.
Tanaka, A., Saito, K., Azoma, K., and Kobayashi, K. 2013. Factors affecting variation in farm yields of irrigated lowland rice in southern-central Benin. European Journal of Agronomy 44: 46-53.
Torabi, B., Soltani, A., Galeshi, S., and Soltani, E. 2012. Documenting the process of wheat production in Gorgan. Journal of Plant Production 19(4): 19-42. (In Persian with English Summary)
Torabi, B., Soltani, A., Galeshi, S., Zeinali, E., and Kazemi Korgehei, M, 2013. Ranking factors causing the wheat yield gap in Gorgan. Electronic Journal of Crop Production 6(1): 171-189. (In Persian with English Summary)
Torabi, M.H., Soltani, A., Dastan, S. and Ajam Norouzi, H. 2019. Assessment of energy flow, carbon saving, and greenhouse gas emission in rice production scenarios. Environmental Sciences 16(4): 187-212. (In Persian with English Summary)
Van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., and Hochman, Z. 2013. Yield gap analysis with local to global relevance-A review. Field Crops Research 143: 4-17.
Van Wart, J., Kersebaum, K.C., Peng, S., Milner, M., and Cassman, K.G. 2013. Estimating crop yield potential at regional to national scales. Field Crops Research 143: 34-43.
Xu, X., He, P., Zhaoa, S., Qiua, S., Johnstond, A.M., and Zhou, W. 2016. Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Research 186: 58-65.
Yousefian, M., Dastan, S., Soltani, A., and Ajam Norouzi, H. 2018. Estimation of yield gap in local rice cultivars by using CPA and BLF Methods (case study: Mazandaran province, Sari region). Journal of Crop Management 10(3): 265-288. (In Persian with English Summary)