برآورد و پهنه‌بندی تاریخ مناسب کشت گندم دیم(Triticum aestivum L.) بر اساس سطوح مختلف احتمال وقوع بارش پاییزه در استان گلستان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد گرگان

2 اداره کل هواشناسی استان گلستان

چکیده

با توجه به وابستگی شدید تاریخ مناسب گندم دیم  (Triticum aestivum L.)به وقوع بارش­های پاییزه و نوسان آن در سال­های مختلف، پژوهش حاضر با هدف برآورد تاریخ مناسب کشت گندم دیم در استان گلستان با استفاده از داده­های بارش روزانه 57 ایستگاه هواشناسی در دوره آماری مشترک 1395-1370 در پنج سطح احتمال وقوع 25، 50، 75، 85 و 95 درصد انجام شد. تاریخ کشت بر اساس وقوع اولین بارش برابر و بیشتر از 25 میلی­متر طی یک دوره 10 روزه متوالی در ماه آذر انتخاب گردید. به منظور بررسی صحت نتایج و اعتبارسنجی نتایج، از یافته­های پژوهش­های مختلف که در مقیاس مزرعه در استان گلستان انجام شده بود، استفاده شد. نتایج نشان داد که تاریخ مناسب کشت گندم دیم در نیمه جنوبی استان زودتر از نیمه شمالی می­باشد. سطح احتمال بر تاریخ کشت تأثیر معنی­دار داشت، ولی اثر ایستگاه بر آن معنی­دار نبود. اختلاف آماری بین تمام سطوح احتمال وقوع معنی­دار بود به طوری‌که سطح احتمال 25 و 95 درصد به ترتیب نشان‌دهنده زودترین و دیرترین تاریخ مناسب کشت گندم در استان گلستان بود. در ایستگاه­های مختلف استان، تاریخ کشت مناسب گندم دیم با احتمال وقوع 25 درصد بین اول تا 10 آذر، با احتمال وقوع 50 درصد بین اول تا 22 آذر، با احتمال وقوع 75 درصد بین 3 آذر تا 13 دی، با احتمال وقوع 85 درصد بین 11 آذر تا 25 دی و با احتمال وقوع 95 درصد بین 21 آذر تا 30 دی قرار داشت. با افزایش سطح احتمال پنجره تاریخ کشت در سطح استان طولانی­تر گردید به گونه­ای که اختلاف تاریخ کشت مناطق مختلف استان در سطح احتمال 25 درصد 10 روز و در سطح احتمال 95 درصد 40 روز ه دست آمد. بر اساس نتایج، کاهش اندک ریسک زراعت (افزایش احتمال وقوع بارش مناسب از 25 به 50 درصد) با تأخیر تاریخ کشت گندم به مدت چند روز امکان­پذیر است در حالی است که کاهش بیشتر ریسک زراعت (افزایش احتمال وقوع بارش مناسب به 75، 85 و 95 درصد) از طریق تأخیر تاریخ کشت به میزان چند دهه مقدور خواهد بود. صحت­سنجی و اعتبارسنجی نتایج پژوهش حاضر با نتایج پژوهش­های مزرعه­ای و میدانی، ضمن تائید دقت قابل قبول پیش­بینی تاریخ مناسب کشت بر اساس معیار معرفی شده، نشان داد که کشاورزان استان با درک صحیح از نقش بارش پاییزه در استقرار بوته و عملکرد محصول، تاریخ کشت گندم را با سطح احتمال بالایی درست انتخاب می­نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination and Zoning of Suitable Planting Date of Rainfed Wheat (Triticum aestivum L.) in Golestan Province based on Different Levels of Occurrence Probability of Autumn Rainfall

نویسندگان [English]

  • kami kaboosi 1
  • Osman Majidi 2
1 Gorgan branch, Islamic Azad University
2 Golestan Meteorological Administration
چکیده [English]

Introduction[1]
 Wheat has strategic importance in Iran and Golestan province is one of the major regions of wheat production in the country. Province has the third place among all provinces of the country in term of wheat cultivated lands (about 400 thousand hectares) and grain production (more than one million tons). The optimal planting date for any crop normally occur within a sowing window. It is defined as beginning and end of the planting period which guarantee the achievement of reasonable yield. In rainfed farming, farmers face a decision of whether or not to plant when sufficient rainfall accumulates to increase soil moisture content. If the average meteorological data is used to design a farming system, such as planting date, its probability will be 50 percent. Average rainfall data (50 percent probability level) are quite unreliable for cropping planning. Usually, risk levels of 60 to 80 percent are recommended depending on the sensitivity of the crop to water stress, acceptable risk by farmer and soil. Therefore, it can be stated that in rainfed cultivation, farmers choose their risk based on the selection of the planting date. Considering the importance of predicting the appropriate planting date in optimizing farm management in rainfed farming and its dependence on the occurrence of autumn rainfall on the one hand and the stochastic nature of rainfall, on the other hand, the present study was conducted to determine the sowing window of wheat in the Golestan province at different occurrence probability levels.
 
Materials and Methods
 Initially, by reviewing the geographic distribution of meteorological stations in Golestan province and their statistical period, daily rainfall data of 58 meteorological stations in the 1991- 2016 period (26 years) were gathered. Then, suitable planting date of wheat in each station and year was determined based on the first rainfall date equal to or more than 25 mm over a period of 10 consecutive days in October. In the next step, suitable planting date for each station was calculated by the occurrence probability level 25, 50, 75, 85 and 95 percent based on statistical analysis and choose the best probability function using the software SMADA. Verification of zoning maps was done based on findings of field scale researches. Finally, in the meantime of statistical analyzing the results, zoning maps of suitable planting date of rainfed wheat were prepared using ArcGIS software by Inverse Distance Weighting (IDW).
 
Results and Discussion
 The results showed that the suitable planting date of rainfed wheat in the southern half of the Golestan province was earlier than the northern part. The occurrence probability level had a significant effect on suitable planting date but the effect of the station was not significant. The statistical difference between all occurrence probability levels was significant, so that the occurrence probability level of 25 and 95 percent indicated the earliest and bottommost suitable planting date of rainfed wheat in Golestan province, respectively. Within different stations of the province, the suitable planting dates of rainfed wheat for 25, 50, 75, 85 and 95 percent occurrence probability were between 22 November to 1 December, 22 November to 13 December, 24 November to 3 January, 2 December to 15 January and 12 December to 20 January, respectively. Increasing the occurrence probability levels prolonged the sowing window so that the difference between suitable planting dates in different stations was 10 and 40 days for 25 and 95 probability level, respectively. According to the results, a small reduction in the risk of farming (an increase in the occurrence probability level of suitable rainfall from 25 to 50 percent) is possible with a delay in planting date for a few days, while a greater reduction in the risk (an increase in the occurrence probability level of suitable rainfall to 75, 85 and 95 percent) will be possible through a delay of the planting date for several decades. Verification and validation of the results of this study based on findings of field scale researches confirmed the accuracy of predicting the suitable planting date by autumn rainfall.
 Conclusion
The results showed that the farmers of the Golestan province with the correct understanding of the role of autumn rainfall in crop growth and yield and based on their experimental knowledge, selected the appropriate planting date of rainfed wheat with a high probability level.

کلیدواژه‌ها [English]

  • Delayed Planting
  • Risk
  • Sowing Window
Abbasi, F., Ehteramian, K., Khazanedari, L., Mohammadnia Gharaei, Sh., and Asmari, M. 2015. Locating the most suitable dry land wheat areas (case study: North Khorasan province). Journal of Climate Research 4: 57-72. (In Persian with English Summary)
Ahmadali, K., Hosseini Pajouh, N., and Liaghat, A.M. 2016. Determination of optimal planting date of rainfed wheat in Kurdistan Province, Iran. Agronomy Journal (Pajouhesh and Sazandegi) 108: 9-18. (In Persian with English Summary)
Ahmadamini, T., Kamkar, B., and Soltani, A. 2011. The effect of planting date on partitoning coefficient in some species of wheat. Crop Production 4: 131-150. (In Persian with English Summary)
Ahmadi, M., Fallahi Khoshji, M., and Mafakheri, O. 2017. Predicting changes of rainfed Barley (Hordeum vulgare L.) farming calendar using downscaling LARS-WG and HadCM3 models in Lorestan province in 2011-2030 periods. Journal of Agroecology 9: 475-489. (In Persian with English Summary)
Alizadeh, A., Sayari, N., Ahmadian, J., and Mohamadian, A. 2009. Study for zoning the most appropriate time of irrigation of saffron in Khorasan Razavi, northern and southern provinces. Journal of Water and Soil 23: 109-118. (In Persian with English Summary)
Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M., and Andarzian, B. 2015. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. Journal of the Saudi Society of Agricultural Sciences 14: 189-199.
Anonymous. 2016. Agricultural Statistical Book (2014-2015). Available online at: www.maj.ir.
Ashofteh, P.S., and Massah, A.R. 2010. Impact of climate change uncertainty on temperature and precipitation of Aidoghmoush basin in 2040-2069 periods. Soil and Water Science 19.1: 85-98. (In Persian with English Summary)
Bannayan, M., Eyshi Rezaei, E., and Hoogenboom, G. 2013. Determining optimum planting dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration. Agricultural Water Management 126: 56-63.
Bussmann, A., Elagib, N.A., Fayyad, M., and Ribbe, L. 2016. Sowing date determinants for Sahelian rainfed agriculture in the context of agricultural policies and water management. Land Use Policy 52: 316-328.
Cheraghi, R., Ramroudi, M., Taee Semiroumi, J., and Lorzadeh, S. 2018. Geographical distribution of rainfall and temperature optimum at sowing to emergence canola using GIS in Khuzestan province. Journal of Agroecology 9: 1007-1019. (In Persian with English Summary)
Dobor, L., Barcza, Z., Hlasny, T., Arendas, T., Spitko, T., and Fodor, N. 2016. Crop planting date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology 223: 103-115.
Food and Agriculture Organization (FAO). 2018. The FAOSTAT Database. Available at Website http://faostat.fao.org/default.aspx.
Fooladmand, H.R. 2010. Estimation of sugarbeet irrigation requirement in different regions of Fars province in critical conditions and definite probability levels. Journal of Sugar Beet 25: 162-153. (In Persian with English Summary)
Fooladmand, H.R. 2011. Estimation of irrigation requirement for important agricultural crops at the different probability levels for the province of Fars. Water Engineering 4: 65-73. (In Persian with English Summary)
Hundal, S.S., Singh, R., and Dhaliwal, L.K. 1997. Agro-climatic indices for predicting phenology of wheat (Triticum aestivum) in Punjab. The Indian Journal of Agricultural Sciences 67: 265-286.
Kaboosi, K., and Majidi, O. 2017a. Agro-ecological zoning of rainfed wheat in Golestan province based on meteorology, agronomy, soil and land properties. Journal of Agroecology 7: 134-154. (In Persian with English Summary)
Kaboosi, K., and Majidi, O. 2017b. Zoning of planting and harvesting dates and length of growth stages of rainfed wheat based on precipitation and temperature data in Golestan province. Iranian Journal of Dryland Agriculture 6(1): 103-120. (In Persian with English Summary)
Kamali, G., Mollaei, P., and Behyar, M.B. 2010. Development of Zanjan province dry land wheat atlas by using climatic data and GIS. Journal of Water and Soil 24: 894-907. (In Persian with English Summary)
Kamali, G., Sadaghiani Poor, A., and Sedaghatkerdar, A. 2008. The climatic zoning of dryland wheat in Eastern Azerbaijan. Journal of Water and Soil 22: 467-483. (In Persian with English Summary)
Kaviani, M.R., Hosseini Abri, S.H., and Asadi Broujeny, E. 2002. Probability of occurrence and return period of minimal temperature in almond orchards at Semnan region during March, April and May. Journal of Agricultural Sciences and Natural Resources 9: 49-57. (In Persian with English Summary)
Khoshal Dastjerdi, J., Nazari, A., Ghangharmeh, A., and Fallahi, H.A. 2015. Predicting isometropia- rainfall in dry wheat implantation and cultivation in Gonbad Kavoos province. Geographical Planning of Space 5: 169-184. (In Persian with English Summary)
Mehdizadeh, S., Behmanesh, J., and Nikbakht, J. 2011. Estimation of reference evapotranspiration with various occurrence probability levels (Case study: Urmia). Water and Soil Science 20: 171-183. (In Persian with English Summary)
Mianabadi, A., Mousavi Baygi, M., Sanai Nejad, H., and Nezami, A. 2009. Assessment and mapping of early autumn, late spring and winter freezing in Khorasan Razavi province using GIS. Journal of Water and Soil 23: 79-90. (In Persian with English Summary)
Mohammadi, H. 2005. The determining suitable dry farming wheat time in Ilam provience. Geographical Research 37: 15-31. (In Persian with English Summary)
Naderi, A. 2014. Analysis the effect of planting date on wheat genotypes grain yield by using regression methods. Crop Physiology Journal 5: 5-14. (In Persian with English Summary)
Nekahi, M.Z., Soltani, A., Siahmarguee, A., and Bagherani, N. 2014a. Yield gap associated with crop management in wheat (Case study: Golestan province -Bandargaz). Crop Production 7: 135-156. (In Persian with English Summary)
Nekahi, M.Z., Soltani, A., Siahmarguee, A., and Bagherani, N. 2014b. Factors affecting the population density of weeds and yield loss of them in wheat: a case study in Golestan province- Bandargaz. Journal of Agroecology 6: 393-405. (In Persian with English Summary)
Nikbakht, J., and Mir Latifi, S.M. 2002. Effects of ET0 computing method, probability level and length of peak water requirement period on daily reference evapotranspiration. Iranian Journal of Soil and Waters Sciences 16: 222-230. (In Persian with English Summary)
Noohi, K. 2005. Rainfall analysis of Karaj for determination of rainfed wheat sowing date. Nivar 58: 95-103. (In Persian with English Summary)
Nouri, M., Homaee, M., Bannayan, M., and Hoogenboom, G. 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agricultural Water Management 186: 108-119.
Rezvantalab, N., Soltani, A., Zeinalee, A., and Deilam Salehi, R. 2017. Documenting the process of wheat production in Golestan province. Research Achievement for Improvement Crop Production 2: 1-16. (In Persian with English Summary)
Sobhani, B., Ganji, M., and Goldoust, A. 2017. Determination and investigation about beginning and end dates of early and late freezes and possibility of its continuity, intensity and succession in Ardabil province. Physical Geography Research Quarterly 49: 39-53. (In Persian with English Summary)
Sys, I.C., Van Ranst, E., and Debaveye, J. 1991. Land evaluation- Part I: Principle in land evaluation and crop production calculations. General Administration for Development Cooperation, Agricultural Publication No. 7, Brussels, Belgium, 274 pp.
Tavakoli, A.R. 2014. Effects of sowing date and single irrigation on yield and yield components of rainfed barley cultivars. Iranian Dryland Agronomy Journal 2: 53-68. (In Persian with English Summary)
Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E. 2012. Documenting the process of wheat production in Gorgan. Journal of Plant Production 19: 19-42. (In Persian with English Summary)
Yasari, T. 2014. Determining planting dates for spring safflower by temperature and digital elevation model in Esfahan province. Physical Geography Research Quarterly 46: 389-405. (In Persian with English Summary)
Zheng, Z., Cai, H., Yu, L., and Hoogenboom, G. 2017. Application of the CSM-CERES-Wheat model for yield prediction and planting date evaluation at Guanzhong plain in Northwest China. Agronomy Journal 109: 204-217.
Ziaee, A.R., Kamgar-Haghighi, A.A., Sepaskhah, A.R., and Ranjbar S. 2006. Development of Fars province probable minimum temperature atlas using meteorological data. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources) 10: 13-27. (In Persian with English Summary)