تأثیر زئولیت، میکوریزا و سوپرجاذب بر رشد و استقراراولیه گیاه مرتعی دارویی بومادران (Achillea millefolium L.) در خاک‌های آلوده به فلزات سنگین معادن متروکه سیمان (مطالعه موردی: کارخانه سیمان شرق مشهد)

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه فردوسی مشهد

10.22067/jag.v10i2.63197

چکیده

امروزه معدن‌کاوی‌ها تا مساحت زیادی موجب تخریب مراتع می‌گردد، برای عبور از این بحران، نیاز فراوانی به احیاء اراضی تخریب یافته به وسیله استقرار گیاهان در مناطق معدن‌کاوی شده احساس می‌شود. روش‌های جدید اصلاح مراتع مبتنی بر استفاده از رهیافت‌های زیستی و غیرزیستی (زئولیت، سوپرجاذب و میکوریزا) می‌تواند به استقرار گیاهان در این مناطق کمک کند. این تحقیق با هدف بررسی امکان افزایش استقراراولیه و رشد گیاه مرتعی دارویی بومادران (L. (Achillea millefoliumدر اراضی معدن‌کاوی شده آلوده به فلزات سنگین، ابتدا نشاء‌های کشت شده در گلخانه با میکوریزا (Glomus intraradices) زئولیت و سوپرجاذب تلقیح و سپس در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار در منطقه نیمه خشک اراضی معدن‌کاوی کارخانه سیمان شرق مشهد در سال 95- 1394 کشت شد. گیاهان فقط یک‌بار در زمان کشت آبیاری شدند. در این تحقیق درصد استقرار، ارتفاع گیاهان کاشته شده، درصد کلونیزاسیون میکوریزا با ریشه گیاه بومادران در اراضی و برخی از خصوصیات مورفولوژیکی از جمله وزن خشک اندام‌هوایی، وزن خشک ریشه و وزن خشک کل گیاه اندازه‌گیری شد. تیمارهای میکوریزا، زئولیت و سوپرجاذب موجب افزایش استقرار اولیه گیاهان (به‌ترتیب 50 ، 33 و 11 درصد) افزایش ارتفاع (3/14، 3/12 و 3/6 سانتی‌متر)، افزایش وزن خشک اندام هوایی (73/0، 57/0 و 5/0 گرم)، افزایش وزن خشک ریشه (26/0، 15/0 و 14/0 گرم) و وزن خشک کل گیاه (1، 73/0 و 64/0 گرم) نسبت به شاهد شدند. نتایج نشان داد که تیمارهای میکوریزا، زئولیت و سوپرجاذب به‌ترتیب بیشترین تأثیر را بر ‌افزایش استقرار اولیه و بهبود خصوصیات رشدی گیاه بومادران داشتند و می‌توان جهت استقرار اولیه گیاهان در اراضی آلوده به فلزات سنگین منطقه معدن‌کاوی شده کارخانه سیمان شرق مشهد در منطقه نیمه‌خشک واقع شده‌اند پیشنهاد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Mycorrhiza, Zeolite and Superabsorbent on Growth and Initial Establishment of Medicinal Rangeland Species of Achillea millefolium L. in Abandoned Cement Mines Soils (Case Study: Mashhad′ Shargh Cement Factory, Iran)

نویسندگان [English]

  • reyhaneh azimi 1
  • Gholam Ali Heshmati 1
  • Mohammad Farzam 2
  • Morteza Goldani 2
1 Gorgan University of Agricultural Sciences and Natural Resources
2 Ferdowsi University of Mashhad
چکیده [English]

Introduction
Today, mining led to severe degradation of natural and agricultural lands in a relatively large scale. Establishment of vegetation cover around the mining areas is a practical and enviromental sound strategy. However due to poor soil condition and presere of heavy metals this process is risky and establishment of plant cover is not an easy task. Achillea millefolium L. is one of the important species that is used as rangeland and medicinal plant and also as ornamental and cover plant. However, technical issues such as soil amendments type of plant and method of planting need to be considered for a successful establishment. Some soil amendments materials are zeolite, superabsorbent or hydrogel and also mycorrhiza. However initial establishment of proper plant species under field condition is required for feasibility of such studies. The purpose of the present study was to investigate suitability of Achillea millefolium L. for reclamation of contaminated soils around abandoned mines of Mashhad′ Shargh Cement Factory with inclusion of soil amendents.
Materials and Methods
The effect of mycorrhiza (Glomus intraradices), superabsorbent (A200) and zeolite (Clinoptilolite) on the establishment and production of Achillea millefolium L. species in soils of abondened mines (Mashhad′ Shargh Cement Factory) was studied in 2015-2017. The experiment was based on a randomized complete block design with four replications consisting of four treatment (a plant species, mycorrhiza, zeolite and superabsorbent) criteria such as establishment percent, plant height, mycorrhizal colonization on roots, aerial and root dry weight and total dry matter was measured. Method of Giovannetti was used for colonization measurement of roots. The experimental data were categorized using the Excel database software and the charts were drawn. Analysis of variance was carried out by SPSS18 and Minitab16.
Results and Discussion
Analysis of variance showed that zeolite, mycorrhiza and superabsorbent had significant effects on total dry weight, plant height, aerial and root dry weight of Achillea millefolium L. and also on establishment percent of the plant. Use of Mycorrhiza, zeolite and absorbent increased plant establishment by 50, 33 and 11 percent respectively. Zeolite and mycorrhiza increased plant height, aerial and root dry weight and also total dry weight compared with superabsorbent and control. When compared with the control zeolites, mycorrhiza and superabsorbent increased plant height by 14.3, 12.3 and 6.3 cm, dry aerial weight by 0.73, 0.57 and 0.5 g, dry root weight by 0.26, 0.15 and 0.14 gand total dry weight by 1, 0.73 and 0.64 g, respectively. Using suitable mycorrhizal fungi as an inoculum material in contaminated areas with heavy metals can reduce the effects of these toxic metals. Using suitable mycorrhizae fungi as an inoculum material in contaminated areas with heavy metals can reduce the effects of these toxic metals. In a study that was carried out in Germany, natural zeolite was used to remove heavy metals from mine water. Zeolite in reducing iron, lead was more effective than cadmium and zinc.
Conclusions
According to the obtained results, the use of effective and affordable G. intraradices mycorrhiza and zeolite fertilizers as bio-fertilizers to increase yield and initial establishment Achillea millefolium L. plant and vegetation recovery of lands contaminated with heavy metals in mining area of Mashhad Shargh cement factory is recommended.

کلیدواژه‌ها [English]

  • Field
  • Mycorrhiza
  • Rangelands
  • Seedling transplantation
  1. Abedi Koupai, J., and Asadkazemi, J. 2006. Effects of a hydrophilic polymer on the field performance of an ornamental plant (Cupressus arizonica) under reduced irrigation regimes. Iranian Journal of Polymer 15(9): 715-225. (In Persian with English Summary)
  2. Abedi Koupai, J., and Mesforoush, M. 2009. Evaluation of superabsorbent polymer application on yield, water and fertilizer use efficiency in cucumber (Cucumis sativus L.). Iranian Journal of Irrigation and Drainage 2(3): 100-111. (In Persian with English Summary)
  3. Adams, P.W., and Lamoureux, S. 2005. A literature review of the use of native northern plants for the re-vegetation of Arctic mine tailings and mine waste. Northwest Territories Environment and Natural Resources, Canada 67 pp.
  4. Al Humaid, A., and Moftah, A.E. 2007. Effects of hydrophilic polymer on the survival of Buttonwood seedlings grown under drought stress. Journal of Plant Nutrition 30(1): 53-66.
  5. Amanifar, S., Aliasgharzad N., Najafi, N., Oustan, S., and Bolandnazar, S. 2010. Effect of arbuscular mycorrhizal fungi on lead phytoremediation by Sorghum (Sorghum bicolor L.). Journal of Water and Soil Science 22(1): 155-168. (In Persian with English Summary)
  6. Asiedu, J.B. 2013. Technical report on reclamation of small scale surface mined lands in Ghana: a landscape perspective. American Journal of Environmental Protection 1(2): 28-33.
  7. Azimi, R. 2013. The effect of mycorrhiza on the establishment and morphological characteristics species Bromus kopetdaghensis, Medicago sativa, Thymus vulgaris and Ziziphora clinopodioides in Baharkish Ghoochan rangelands. Msc Dissertation, Faculty of Natural Resources and Environment, Mashhad Ferdowsi University, Iran. (In Persian with English Summary)
  8. Azimi, R., Jankju, M., and Asghari, H. 2014. Effect of mycorrhiza inoculation on seedlings establishment and morphological parameters of Medicago sativa L. under field conditions. Journal of Agroecology 5(4): 424-432. (In Persian with English Summary)
  9. Azimi, R., Hossein Jafari, S., Kianian, M.K., Khaksarzade, V., and Amini, A. 2016. Studying arbuscular mycorrhiza symbiotic effects on establishment and morphological characteristics of Bromus kopetdaghensis in cadmium contaminated soil. Taiwan Water Conservanc 64(3): 82-91.
  10. Bagherifam, S., Lakziyan, A., Fotovat, A., Khorasani, R., Akbarzadeh, S., and Motedayen, A. 2014. Immobilization of arsenic in a calcareous soil using an iron, manganese and aluminum-modified zeoilite. Journal of Environmental Science and Technology 16(61): 39-54. (In Persian with English Summary)
  11. Bano, S.A., and Ashfaq, D. 2013. Role of mycorrhiza to reduce heavy metal stress. Natural Science 5(12): 16-20.
  12. Barea, J.M., Pozo, M.J., Azcon, R., and Azcon, C. 2005. Microbial co-operation in the rhizosphere. Journal of Experimental Botany 56(417): 1761-1778.
  13. Barea, J.M., Palenzuela, J., Cornejo, P., Sanchez-Castro, I., Navarro-Fernandez, C., Lopez-Garcia, A., Estrada, B., Azcon, R., Ferrol, N., and Azcon-Aguilar, C. 2013. Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. Journal of Arid Environments 75: 1292-1301.
  14. Banedj Schafie, S. 2015. Effect of a superabsorbent polymer on the growth of Panicum antidotale and nitrogen leaching. Iranian Journal of Range and Desert Research 22(3): 595-605.
  15. Boyd, R.S. 2007. The defense hypothesis of elemental hyper accumulation status, challenges and new directions. Plant and Soil 293: 153-176.
  16. Bradley, R., Burt, A.J., and Read, D.J. 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292: 335-337.
  17. Ernest, W., Joachimkarauss, J., Verkleij, J., and Wesenbfrg, D. 2008. Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant, Cell and Environment 31: 123-143.
  18. Fallahi, H.R., Aghhavani Shajari, M., Taherpour Kalantari, R., and Soltanzadeh, M.G. 2016. Evaluation of superabsorbent efficiency in response to dehydration frequencies, salinity and temperature and its effect on yield and quality of cotton under deficit irrigation. Journal of Agroecology 7(4): 513-527. (In Persian with English Summary)
  19. Fenn, M.E., Perea-Estrada, V.M., De Bauer, L.I., Perez-Suarez, M., Parker, D.R., and Centina-Alcala, V.M. 2006. Nutrient status and plant growth effects of forest soils in the basin of Mexico. Environmental Pollution 140: 187-199.
  20. Fenglian, F., and Wan, Q. 2011. Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management 92(3): 407-418.
  21. Giovannetti, M., and Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. Journal of New Physiologist 84: 489-500
  22. Hesam, M., and Kaloee, M. 2014. Moisture retention of the soil by superabsorbent and its effect on yield and water use efficiency of tomato. Journal of Water and Soil Conservation 21(2): 245-259. (In Persian with English Summary)
  23. Huang, Z., Xiang, W., Ma, Y., Ma, P., Tian, D., and Deng, X. 2015. Growth and heavy metal accumulation of koelreuteria paniculata seedlings and their potential for restoring manganese mine wastelands in Hunan, China. International Journal of Environmental Research and Public Health 12: 1726-1744.
  24. Jacob Rossouw, M. 2016. Application of plant growth promoting substances and arbuscular mycorrhizal fungi for phytostabilisation of mine tailings. Msc Dissertation, Plant Biotechnology at the University of Stellenbosch.
  25. Jalili, K., Jalili, J., and Sohrabi, H. 2010. Effect of super absorbent polymer (Tarawat A200) and irrigation interval on growth of almond sapling. Journal of Water and Soil Science 21(2): 121-134. (In Persian with English Summary)
  26. Johnson, N.C. 1998. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation. Journal of Applied Ecology 35: 86-94.
  27. Kabiri, A. 2005. Superabsorbent, Introduction to Applied. The Third Workshop and Seminar Application of Super Absorbent in Agriculture: Iran Polymer and Petrochemical Institute.
  28. Khan, A. 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology 18: 355-364.
  29. Keikhani, F. 2005. Effect of Super Absorbent Efficiency in Plants. Proceedings of the Third Period Educational and Seminars Specialized Agricultural use of Superabsorbent Hydrogels, Karaj. (In Persian)
  30. Marschner, H. 1995. Mineral Nutrition of Higher Plants, London.
  31. Maestre, F., Bautista, S., Cortina, J., and Dıaz, G. 2002. Microsite and mycorrhizal inoculum effects on the establishment of Quercus coccifera in a semi-arid degraded steppe. Ecological Engineering 19: 289-295.
  32. Mench, M., Lepp N., Bert, V., Schwitzguebel, J.P., Gawronski, S.W., Schröder P., and Vangronsveld J. 2010. Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. Journal Soils Sediments 10: 1039-1070.
  33. Mianji, K., Haj Seyed Hadi, S., Riazi, H.R., and Saber Haghighatnia, G.H. 2012. Studying phytoremediation potential of Salvia officinalis and Achillea millefolium in remediation of heavy metal polluted soils. The 12th Iranian Agriculture and Plant Breeding Science Congress, Karaj, Islamic Azad University, Karaj branch, 4-6 September p. 91-96. (In Persian)
  34. Mohammadi Sani, M., Astaraei, A., Fotovat, A., Lakziyan, A., and Taheri, M. 2011. The effect of zeolite and TSP on Speciation of Pb, Zn and Cd in Mine Waste. Journal of Water and Soil 25(1): 42-50. (In Persian with English Summary)
  35. Omid Beigi, R. 2008. Production and Processing of Medicinal Plants, Iran. (In Persian)
  36. Phillips, J.M., and Hayman, D.S. 1970. Improved procedure for clearing roots and staining parasites and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Journal of Transactions of the British Mycological Society 55: 158-161.
  37. Pfleger, F.L., and Linderman, R.G. 1994. Mycorrhizae and Plant Health. American Phytopathological Society, United States of America.
  38. Raisi, T. 2013. Studying environmental effects of heavy elements on agricultural soils. Ariculture and Natural Recourses Engineering Organization 12(46): 34-37.
  39. Ruiz-Baltazar, A., and Perez, R. 2015. Kinetic adsorption study of silver nanoparticles on natural zeolite: experimental and theoretical models. Journal of Applied Sciences 5: 1869-1881.
  40. Sadravi, M., and Gharacheh, N. 2013. The role of mycorrhizal fungi in restoring lands contaminated with toxic substance. Plant Pathology Science 2(2): 45-60. (In Persian with English Summary)
  41. Saghari, M., Barani, H., Mesdagi, M., and Sadroi, M. 2009. Inoculation effect of mycorrhiza and Phosphorus fertilize on growth and yield of two annual Medicago sp. Journal of Iranian Range Management Society 15: 291-301. (In Persian with English Summary)
  42. Shaheen, S.M., Tsadilas, C.D., and Rinklebe, J. 2015. Immobilization of soil copper using organic and inorganic amendments. Journal of Plant Nutrition and Soil Science 178(1): 112-117.
  43. Sharma, A., and Sharma, A. 2013. Role of vesicular arbuscular mycorrhiza in the mycorrhiza in the mycoremediation of heavy toxic metals from soil. International Journal of Life science and Pharma Reviews (IJLPR) 2(3): 418-431.
  44. Shomali, R., and Khodaverdiloo, A. 2012. Contamination of soils and plants along urmia-salmas highway (Iran) to some heavy metals. Journal of Water and Soil Science 22(3): 157-171. (In Persian with English Summary)
  45. Sudova, R., and Vosatka, M. 2007. Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant and Soil 296(1-2): 77-83.
  46. Talaii, A., and Asadzadeh, A. 2005. Scrutiny of the effect of superabsorbent in reducing dryness olive trees. The third seminar courses and agricultural applications superabsorbent. Iranian Institute of Polymer and Petrochemical Institute. (In Persian with English Summary)
  47. Van Rensburg, L., Maboeta, M., and Morgenthal, T. 2003. Rehabilitation of co-disposed diamond tailings: Growth medium rectification procedures and indigenous grass establishment. Water, Air and Soil Pollution 154: 101-113.
  48. Vodyanitskii, Y. 2016. Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science 14: 257-263.
  49. Wingenfelder, U., Hansen, C., Farrer, G., and Schulin, R. 2005. Removal of heavy metals from mine waters by natural zeolites. Environmental Science Technology 39: 4606-4613.
  50. Yari, S., Khalighi-Sigaroodi, F., and Moradi, P. 2013. Effects of different levels of zeolite on plant growth and amount of gel production in Aloe vera L. under different irrigation. Journal of Aromatic and Medicinal Plants 4(48): 72-81. (In Persian with English Summary)