امکان‌سنجی تعیین نواحی کاشت محصولات گندم (Triticum aestivum L.) و کلزا (Brassica napus L.) در محیط سیستم اطلاعات جغرافیایی (مطالعه موردی: حوضه مارون استان خوزستان)

نوع مقاله: علمی - پژوهشی


1 دانشگاه شهیدچمران اهواز

2 شهید چمران اهواز



یکی از روش‌های مؤثر برای مطالعه و شناسایی پتانسیل اراضی کشاورزی، پهنه‌بندی آن‌ها است. در این تحقیق به‌منظور امکان‌سنجی تعیین نواحی کاشت محصولات گندم (Triticum aestivum L.) و کلزا (Brassica napus L.) در حوضه مارون استان خوزستان که یکی از مهم‌ترین استان‌های تولیدکننده محصولات کشاورزی است، از برنامه سیستم اطلاعات جغرافیایی استفاده گردید. ازاین‌رو تمام لایه‌های اطلاعاتی زراعی- بوم‌شناختی شامل اقلیم (دما و بارش)، توپوگرافی (شیب و ارتفاع)، خاک (بافت، pH، شوری و کربن آلی) به همراه پتانسیل منابع آبی، پس از وزن‌دهی با روش تحلیل سلسله مراتبی در محیط سیستم اطلاعات جغرافیایی تهیه و مطابق با نیازمندی‌های محیطی محصولات گندم و کلزا، بر اساس دستورالعمل فائو، طبقه‌بندی شدند. لایه‌های همپوشانی شده به‌عنوان معیاری برای قضاوت در خصوص تناسب اراضی برای محصولات گندم و کلزا لحاظ گردید و نقشه‌های حاصل از آن‌ها بر اساس معیارهای موجود و دستورالعمل فائو در پنج طبقه بسیار مناسب، مناسب، تناسب متوسط، تناسب کم و نامناسب طبقه‌بندی شدند. نتایج نشان داد که 4/7 و 8/9 درصد از کل سطح اراضی موجود در محدوده مطالعاتی، به‌ترتیب در طبقات بسیار مناسب و مناسب برای کاشت هر دو محصول قرار گرفتند. در حالی‌که 2/57 درصد از کل اراضی در طبقات تناسب متوسط و تناسب کم و 6/25 درصد باقیمانده نیز در طبقه نامناسب واقع شدند. در این طبقه‌بندی عوامل شوری خاک و دسترسی به منابع آب (بارش و پتانسیل منابع آبی)، عوامل محدودکننده اصلی بودند. این نتایج می‌تواند به سیاست‌گذاران، برای طراحی الگوی کشت مناسب در جهت حاصلخیزی خاک، کمک نماید.


عنوان مقاله [English]

Feasibility Study of Determination of Planting Areas for Wheat and Canola using GIS (Case Study: Maroon Basin of Khuzestan Province)

نویسندگان [English]

  • Nosratollah Heidarpour 1
  • Hoshang Bahramy 2
  • Yaghoob Mansoori 1
  • Saeed Hojati 1
1 Shahid Chamran University of Ahwaz
2 Shahid Chamran University of Ahwaz
چکیده [English]

Undoubtedly, development of agricultural production systems without sufficient knowledge of the current situation and defining constraints is impossible. The potential of lands for cultivation of crops is determined by evaluation of biophysical and environmental variables. Therefore, climate, soil and geomorphologic environmental components are the most important agro-ecological variables for the evaluations. GIS is a powerful set of tools for collecting, storing, retrieving, transforming and displaying spatial data of the real world. Much progress has been made over the last twenty years in developing methods of multi criteria-land suitability evaluations, especially by integrating GIS with multi-criteria decision making (MCDM). From MCDM, the analytic hierarchy process (AHP) is one of the most common methods to determine criteria weights. The integration of GIS and AHP approach is a useful method for decision-making, suitable for analysis of a big amount of data with a new set, enabling to show them in the form of maps and shapes. The aim of this study was to investigate the potentiality of lands for cultivation of Canola and Wheat in order to increase the sustainable productivity of the crops in Maroon basin of Khuzestan province, Iran, using a GIS based approach.
Materials and Methods
The study area of this experiment is located in the Maroon basin of Khuzestan Province in South West Iran with hot and dry climatic conditions. This area contains nearly 30 percent of current agricultural lands in Khuzestan province. Relevant environment components such as soil properties (pH, EC, texture, organic matter), topography (Elevation and slope), climate factors (precipitation and temperature) and water resources potential for cultivation of canola and wheat at different spatial resolutions were considered, collected from scientific references and then classified. Afterwards, digital information layers for Wheat and Canola were prepared based on the growth parameters and available environmental conditions, with AHP weighting using GIS. Experts’ opinions were employed to determine the sufficient weights of each factors using relevant questionnaires. Finally, the generated agricultural land suitability maps were divided into 5 categories according to FAO classification guidelines as: highly suitable, suitable, moderately suitable, marginally suitable and not suitable.
Results and Discussion
The results of the research showed that among the factors contributing to land, the weightings of soil salinity and slope, with 0.2231 and 0.0254 were the highest and lowest limit, respectively. The weights are applied in overlapping layers of existing conditions using GIS software shows that an area of 632473 hectares of land in the basin Maroon, each year, and the different potential for canola and wheat crops. According to the agricultural land use suitability map, it was determined that 7.4% (46890 ha) of the studied area is highly suitable, 9.8% (62013 ha) suitable, 27.8% (175950 ha) moderately suitable, 29.4% (185434 ha) marginally suitable and 25.6% (162186 ha) not suitable for cultivation of wheat and canola. High soil salinity and limited water resources in the studied area were the most effective factors lowering the suitability of agricultural lands, in this study.
GIS is a powerful tool, as it provides many special features in a single system usable for land suitability. Generally, the goal of this study was to achieve some conclusions on the quality of land, decide on crop rotation and scheme for the management of the farms. This study were realized with the aid of GIS and AHP. It determined spatial highly suitable in Maroon basin district of Khuzestan province which help to sustainable agricultural production.
This study was supported by the Agricultural Research, Education and Extension Organization, Jehad Agricultural and Water and Power Authority of Khuzestan province. We acknowledge them for their assist.

کلیدواژه‌ها [English]

  • Analytical Hierarchy Process
  • Crop rotation
  • Land suitability
  1. Abbaspour, M., Mahiny, A.S., Arjmandy, R., and Naimi, B. 2011. Integrated approach for land use suitability analysis. International Agrophysics 25: 311-318.
  2. Akinci, H., Ozalp, A.Y., and Turgut, B. 2013. Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture 97: 71-82.
  3. Aminifar, J., Mohsenabadi, G.H., Biglouei, M.H., and Samiezadeh, H. 2012. Effect of deficit irrigation on yield, yield components and phenology of soybean cultivars in Rasht region. International Journal of AgriScience 2(2): 185-191.
  4. Apaydin, H., Kemal Sonmez, F., and Ersoy Yildirim, Y. 2004. Spatial interpolation techniques for climate data in the GAP region in Turkey. Climate Research 28: 31-40.
  5. Asana, R.D., and Kale, V.R. 1965. A study of salt tolerance of four varieties of wheat. Indian Journal of Plant Physiology 8: 5-22.
  6. Ceballos-Silva, A., and Lopez-Blanco, J. 2003. Delineation of suitable areas for crops using a multi-criteria evaluation approach and land use/cover mapping: a case study in central Mexico. Agricultural Systems 77(2): 117-136.
  7. Chen, J. 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena (Journal of Soil Science- Hydrology- Geomorphology focusing on Geoecology and Landscape Evolution) 69(1): 1-15.
  8. Food and Agriculture Organization (FAO). 1976. A Framework for Land Evaluation, Soils Bulletin 32. Rome.
  9. Food and Agriculture Organization (FAO). 1984. Guidelines for land evaluation for rainfed agriculture. Soils Bulletin, No. 52. Rome: FAO.
  10. Food and Agriculture Organization (FAO). 1985. Guidelines: land evaluation for irrigated agriculture. Soils Bulletin, No. 55. Rome: FAO.
  11. Food and Agriculture Organization (FAO). 2014. The FAOSTAT Database Available at Web site. http://faostat.fao.org/site/339/default.aspx (last accessed 2015.12.13).
  12. Farajzadeh, M., and Mirzabayati, R. 2007. Possibility study of areas with potential cultivation of saffron in Nishabor plain using GIS. Tarbiat Modarres University. Journal of Modarres Human Sciences 50: 67-92. (In Persian with English Summary)
  13. Francois, L.E. 1994a. Growth, seed yield, and oil content of canola grown under saline conditions. Agronomy Journal 86(2): 233-237.
  14. Ghahroodi Tali, M. 2002. Assessment of Kriging Interpolation, Geographical Research, Tehran University Press, Iran 34: 95-108. (In Persian)
  15. Ghasemi Pirbalouti, A. 2009. GIS-based land suitability evaluation for rapeseed oil crop. Journal of Food, Agriculture and Environment 7(3 and 4): 837-840.
  16. Giardini, L., Borin, M., Giupponi, C., and Bonini Baraldi, A. 1997. La classification agronomic del territorio: proposta metodologica del sistema CAT II. Journal of Genio Rurale 5: 53-64.
  17. Godfray, H. 2010. Food security: The challenge of feeding 9 billion people. Journal of Science 327(5967): 812-818.
  18. Grassano, N., Tedone, L., Verdini, L., and De Mastro, G. 2011. Evaluation of rapeseed cultivation suitability in Apulia with GIS multi criteria analysis. Italian Journal of Agronomy 6(2): 101-105.
  19. Hall, O., Duit, A., and Caballero, L.N.C. 2008. World poverty, environmental vulnerability and population at risk for natural hazards. Journal of Maps 4(1): 151-160.
  20. Hassani Pak, A.A. 2013. Geostatistics. Tehran University Press, Tehran, Iran 328 pp. (In Persian)
  21. Hossain, M.S., Chowdhury, S.R., Das, N.G., and Rahaman, M.M. 2007. Multi-criteria evaluation approach to GIS-based land-suitability classification for tilapia farming in Bangladesh. Journal of Aquaculture International 15(6): 425-443.
  22. Javadian, M., Shamskooshki, H., and Momeni, M. 2011. Application of sustainable urban development in environmental suitability analysis of educational land use by using AHP and GIS in Tehran. Journal of Procedia Engineering 21: 72-80.
  23. Kafi, M., Ganjali, A., Nezami, A., and Shariat-Madar, F. 2000. Weather and Yeild. Ferdowsi University of Mashhad, Iran 311 pp. (In Persian)
  24. Kalogirou, S. 2002. Expert system and GIS: an application of land suitability evaluation. Journal of Computers, Environment and Urban Systems 26(2 and 3): 89-112.
  25. Kamkar, B., Dorri, M.A., and Teixeira da Silva, J.A. 2014. Assessment of land suitability and the possibility and performance of a canola (Brassica napus L.) – soybean (Glycine max L.) rotation in four basins of Golestan provience, Iran. The Egyptian Journal of Remote Sensing and Space Sciences 17: 95-104.
  26. Katerji, N., Van Hoorn, J.W., Hamdy, A., and Mastrorilli, M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Journal of Agricultural Water Management 62(1): 37-66.
  27. Kazemi, H. 2014. Ecological zoning of agricultural lands in Gorgan for sunflower cultivation. Journal of Plant Production 21(1): 25-47. (In Persian with English Summary)
  28. Khahro, S.H., Matori, A.N., Chandio, I.A., and Talpur, M.A.H. 2014. Land suitability analysis for installing new petrol filling stations using GIS. Journal of Procedia Engineering 77: 28-36. http://dx.doi.org/10.1016/j.prong.
  29. Khajehpour, M.R. 2014. Principles and Fundamentals of Crop Production (Third Edition). Isfahan University of Technology Press, Esfahan, Iran 658 pp. (In Persian)
  30. Lambin, E.F., and Meyfroidt, P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of National Academy of Sciences of the U.S.A. 108(9): 3465-3472.
  31. Malakouti, M.J., and Gheibi, M.N. 1998. Determination of critical level for nutrients effective upon the soil, plant and fruits. Publish Agricultural Training, Iran 64 pp. (In Persian)
  32. Ministry of Agriculture Jihad of Iran (MAJI). 2016. Annual agricultural statistics. http://www.maj.ir/portal/Home/Default.aspx.
  33. Montgomery, B., Dragicevic, S., Dujmovic, J., and Schmidt, M. 2016. A gis-based logic scoring of preference method for evaluation of land capability and suitability for agriculture. Journal of Computers and Electronics in Agriculture 124: 340-353.
  34. Morrison, M.J., and Stewart, D.W. 2002. Crop physiology and metabolism heat stress during flowering in summer Brassica. Journal of Crop Science 42: 797-803.
  35. Murdock, L., Herbek, J., and Riggins, S.K. 2013. Canola production and management. www.ca.uky.edu/agc/pubs/id/id114/id114.htm (Last accessed 2008.12.13).
  36. Myers, R.L. 2002. Canola: an emerging oilseed alternative. (last accessed 2008.12.13).
  37. Nasroallahi, N., Kazemi, H., and Kamkar, B. 2015. Feasibility of annual alfalfa cropping in Aq-Qalla township (Golestan Provience). Journal of Agroecology 7(3): 397-411. (In Persian with English Summary)
  38. Ninyerola, M., Pons, X., and Roure, J.M. 2000. A methodological approach of climatologically modeling of air temperature and precipitation through GIS techniques. International Journal of Climatology 20: 1823–1841.
  39. Ozturk, O. 2010. Effect of source and rate nitrogen fertilizer on yield, yield components and quality of winter rapeseed. Chilean Journal of Agricultural Research 70(1): 132-141.
  40. Parry, M., Rosenzweig, C., Iglesias, A., Livermore, M., and Fischer, G. 2004. Effects of climate change on global food production under SRES emissions and socioeconomic scenarios. Journal of Global Environmental Change 14(1): 53-67.
  41. Pellerano, A., Pantaleo, A., Tenerelli, P., and Carone, M.T. 2007. Studio per la valorizzation energetica di biomasse agroforestali nella Regione Puglia. Dipartimento PROGESA, Universita di Bari, Italy p. 207.
  42. Rahman, R., and Saha, S.K. 2008. Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchy process (AHP) in optimal cropping pattern planning for a flood prone area. Journal of Spatial Science 53(2): 161-177.
  43. Rashid Sorkh Abadi, M., Shahidi, A., and Khashel Siuki, A. 2015. Spatial zoning of safferon cultivation based on climate factors using hierar analysis process method (Case study: Torbat hydariyeh city). Journal of Agroecology 7(2): 225-236. (In Persian with English Summary)
  44. Rastegar, M.A. 2005. General Agriculture. Barahmand Publications. Iran 411 pp. (In Persian)
  45. Reshmidevi, T.V., Eldho, T.I., and Jana, R. 2009. A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Journal of Agricultural Systems 101: 101-109.
  46. Rubio, G., Zhu, J., and Lynch, J.P. 2003. A critical test of the two prevailing theories of plant response to nutrient availability. Ameican Journal of Botany 90(1): 143-152.
  47. Saaty, T.L. 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill Comp., New York p. 54-55.
  48. Saaty, T.L. 2004. Mathematical Methods of Operations Research. Dover Publications, Mineola p. 415-447.
  49. Sarmadian, F., and Taati, A. 2014. Agroecological zoning of the Qazvin area for wheat using RS and GIS. Journal of Agroecology 7(3): 368-380. (In Persian with English Summary)
  50. Seyamy, R. 2008. Techniques and Management of Field Crop Production. Tehran Sepehr Press, Tehran, Iran 400 pp. (In Persian)
  51. Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land Evaluation. Part І: Principles in Land Evaluation and Crop Production Calculations; Part ІІ: Methods in Land Evaluation; Part ІІІ: Crop Requirements. Agricultural Publications No. 7. General Administration for Development Cooperation, Brussels 280 pp.
  52. Tajbakhsh, M., and Pourmirza, A.A. 2003. Cereal Agronomy. Urmia University Press Urmia, Iran 312 pp. (In Persian)