ارزیابی جذب و کارایی مصرف نور در کشت مخلوط جایگزینی ماریتیغال (Silybum marianum L.) و رازیانه (Foenicolum vulgar Mill.)

نوع مقاله: علمی - پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

10.22067/jag.v10i2.34659

چکیده

این پژوهش با هدف بررسی و ارزیابی کارایی مصرف نور در کشت مخلوط جایگزینی ماریتیغال (Silybum marianum L.) و رازیانه (Foenicolum vulgar Mill.) انجام گرفت. آزمایش با پنج تیمار در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در سال زراعی 92-1391 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد اجرا شد. تیمارهای آزمایشی شامل کشت خالص ماریتیغال، کشت خالص رازیانه، کشت مخلوط 3:1 (25% رازیانه: 75% ماریتیغال)، کشت مخلوط 1:1 (٥٠% رازیانه: ٥٠% ماریتیغال) و کشت مخلوط 1:3 (75% رازیانه: 25% ماریتیغال) بودند. نتایج نشان داد که میزان تشعشع تجمعی جذب شده در تیمار کشت مخلوط 3:1 (25% رازیانه: 75% ماریتیغال) در مقایسه با سایر تیمارها در بالاترین مقدار بود. میزان کارایی مصرف نور، تشعشع تجمعی جذب شده و ماده خشک تجمعی در ماریتیغال در تمامی تیمارها بالاتر از رازیانه بود. همچنین کارایی مصرف نور این گیاه در طول فصل زراعی از 91/1 تا 36/2 گرم بر مگاژول تشعشع جذب شده متغیر بود و در تیمار کشت مخلوط 1:1 (٥٠% رازیانه: ٥٠% ماریتیغال) در مقایسه با سایر تیمارها به خصوص کشت خالص در بالاترین مقدار قرار داشت. مقادیر کارایی مصرف نور رازیانه نیز از 71/0 تا 39/1 گرم بر مگاژول تشعشع جذب شده متغیر و در تمامی تیمارهای کشت مخلوط بالاتر از تک‌کشتی این گیاه بود. بر این اساس بهترین تیمار قابل توصیه برای کشت مخلوط ماریتیغال و رازیانه تیمار کشت مخلوط 1:1 (٥٠% رازیانه: ٥٠% ماریتیغال) می‌باشد که در آن میزان کارایی مصرف نور ماریتیغال در بالاترین حد (36/2 گرم بر مگاژول) و کارایی مصرف نور رازیانه نیز 93/0 گرم بر مگاژول بود. بر اساس یافته‌های این پژوهش به نظر می‌رسد که استفاده از مخلوط‌های جایگزینی و ایجاد تنوع در ساختار و مدیریت مزرعه، رویکردی مفید در جهت افزایش کارایی مصرف منابع به‌ویژه نور باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Radiation Interception and Use Efficiency in Substitution Intercropping of Milk thistle (Silybum marianum L.) and Fennel (Foenicolum vulgar Mill.)

نویسندگان [English]

  • Hessamoddin Solouki
  • Mehdi Nassiri Mahallati
  • Alireza Koocheki
  • Parviz Rezvani Moghaddam
Ferdowsi University of Mashhad
چکیده [English]

Introduction
Sunlight is the main source of energy in Agro ecosystems. Light is absorbed by leaves and this energy is stored during the process of photosynthesis in chemical bonds of organic compounds and finally converts to the plant biomass. In order to increase the efficiency of this process and understanding how light changes within the plant canopy is necessary to be aware of how changes in light absorption within a farming system, especially when considering various intercropping systems, agroforestry systems and even non-crop species management. Available reports have shown that the higher resources use efficiency in intercropping systems, especially light, water and nitrogen.
Materials and Methods
This study was aimed to investigate radiation absorption and use efficiency in substitution intercropping of milk thistle (Silybum marianum L.) and fennel (Foenicolum vulgar L.). The experiment was set up with five treatments in a randomized complete block design with three replications at the farm of the Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during 2012- 2013 growing season. In order to implement an ecological and low input system, no chemical inputs (fertilizers and pesticides) was applied. The experiment constituted 5 treatments: sole crop of milk thistle and fennel, intercropping (75% milk thistle-25% fennel), intercropping (50% milk thistle-50% fennel) and intercropping (25% milk thistle-75% fennel). Crops were harvested every eight days corresponding to 6 harvests starting with the development of the fourth leaf and ending at the early flowering. Above ground dry matter (DM) was determined after oven drying at 70 ˚C for 48 h. Leaf area was determined on the same harvested area used for the measurement of above ground dry matter. Leaf area of the Milk thistle was determined by LI3100 area meter. The green area index of Fennel was also calculated, according to the equation 1.
GAI = M × LWR/SLW (Equation 1)
GAI: green area index, M: daily dry matter allocated to the leaf + stem, LWR: leaf weight ratio and SLW: specific leaf weight.
Incident and transmitted radiation of the canopy was measured using the Sun scan Canopy Analysis System (Accu PAR LP-80). The light extinction coefficient (LEC) was determined from the slope of the linear regression between the natural logarithm of radiation transmission and leaf area index. According to the equation 2.
Ii/Io = e-K.LAI (Equation 2)
Io:amount of radiation on the top of canopy, Ii: amount of radiation at the bottom of canopy, K: light extinction coefficient and LAI: leaf area index.
The daily light absorption for both species was calculated according to the equation 3 t0 5.
Ii = Io (1-exp((-KS.LS) + (-KF.LF))) (Equation 3)
Is= Ii( ) (Equation 4)
IF = Ii- Is (Equation 5)
Io: amount of radiation on the top of canopy, Ii: amount of radiation at the bottom of canopy, Is: amount of absorbed radiation by milk thistle, IF: amount of absorbed radiation by fennel, Ks: light extinction coefficient of milk thistle KF: light extinction coefficient of fennel and Ls: leaf area index of milk thistle and LF: leaf area index of fennel.
Radiation use efficiency (RUE) was computed by the linear regression between dry matter accumulation (g.m-2) and cumulative amount of radiation absorption (MJ.m-2). The data statistical analysis and draw the figures were performed by Minitab, V16, Excel and Edraw MaxV5.0. Means were also compared by HSD test at the 5% probability level.
Results and Discussion
Results indicated that radiation use efficiency of milk thistle throughout the growing season was variable from 1.91 to 2.36 g.MJ-1 and in intercropping treatment (50% milk thistle-50% fennel) was at the highest amount. The amount of radiation use efficiency in fennel was variable from 0.71 to 1.39 g.MJ-1. The best recommendable treatment for intercropping of milk thistle and fennel was (50% milk thistle-50% fennel), in which case radiation use efficiency of milk thistle was at the highest level (2.36 g.MJ-1) and radiation use efficiency of fennel was higher than sole cropping (0.93 g.MJ-1). Based on the findings of this study it seems that enhancing diversity in agronomic practices is an effective operational approach to increasing the efficiency of resources.
Acknowledgments
The authors acknowledge the financial support of the project (Grant number 26556) by Vice President for Research and Technology, Ferdowsi University of Mashhad, Iran.

کلیدواژه‌ها [English]

  • Cumulative dry matter
  • Light extinction coefficient
  • Medicinal plants
  • Radiation absorption
  • Temporal diversity
  1. Alizadeh, Y., Koocheki, A., and Nassiri Mahallati, M. 2010. Evaluation of radiation interception and use in intercropping of beans (Phaseolus vulgaris L.) and basil (Ocimum basilicum L.). Journal of Agroecology 2(1): 85-94. (In Persian with English Summary)
  2. Awal, M.A., Koshi, H., and Iked, T. 2006. Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology 139: 74-83.
  3. Banayan, M. 2002. Development and Applications of Simulation Models in Agriculture. Ferdowsi University of Mashhad Publication, Mashhad, Iran. 208 pp. (In Persian)
  4. Banik, P., Midya, A., Sarkar, B.K., and Ghose, S.S. 2006. Wheat and chickpea intercropping systemes in additive series experiment: Advantages and somthering. European Journal of Agronomy 24: 324-332.
  5. Beheshti, A., Koocheki, A., and Nassiri Mahalati, M. 2002. The effect of planting pattern on light interception and radiation use efficiency in canopy of three maize cultivars. Nahal and Bazr 18(4): 417-431. (In Persian with English Summary)
  6. Davazdah Emami, S., and Majnoon Hosseini, N. 2008. Cultivation and Production of Certain Herbs and Spices. 2nd Edition. University of Tehran Press, Tehran, Iran. 300 pp. (In Persian)
  7. Ebrahimpour, F., and Eydizadeh, K. 2008. Medicinal Plants. Payam-e-Nur University Press. Tehran. Iran. pp. 178. (In Persian)
  8. Gholi Beygian, M., Zarghami, R., Nasri, M., Zargari, K., and Haj Seyed Hadi, M.R. 2008. Effect of plant density and N-fertilizer on radiation use effeciency and extinction coefficient in milk thistle (Silybum marianum L.) as a medicinal plant. Iranian Journal of Dynamic Agriculture 6(1): 1-12. (In Persian with English Summary)
  9. Goudriaan, J., and Van Laar, H.H. 1994. Modelling Potential Crop Growth Processes. Kluwer Academic Press. Dordrecht. Netherlants. 236 pp.
  10. Graf, B., Gutierrez, A.P., Rakotobe, O., Zahner, P., and Delucchi, V. 1990. A simulation model for the dynamics of rice growth and development. Part II. The competition with weeds for nitrogen and light. Agricultural Systems 32: 367-392.
  11. Hanming, H., Lei, Y., Lihua, Z., Han, W., Liming, F., Yong, X., Youyong, Z., and Chengyun, L. 2012. The Temporal-spatial distribution of light intensity in maize and soybean intercropping systems. Journal of Resources and Ecology 3(2): 169-173.
  12. Hossein Panahi, F., Koocheki, A., Nassiri Mahallati, M., and Ghorbani, R. 2010. Evaluation of radiation interception and use in intercropping of maize (Zea mays L.) and potato (Solanum tuberosum L.). Journal of Agroecology 1: 45-54. (In Persian with English Summary)
  13. Hossein Panahi, F., Pour Amir, F., Koocheki, A., Nassiri Mahallati, M., and Ghorbani, R. 2011. Evaluation of radiation interception and use in substitution intercropping of chickpea (Cicer arietinum L.) and sesame (Sesamum indicum L.). Journal of Agroecology 3(1): 106-120. (In Persian with English Summary)
  14. Jahan, M., Nassiri Mahallati, M., Amiri, M.B., and Ehyayi, H.R. 2013. Radiation absorption and use efficiency of Sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products 43: 606– 611.
  15. Javanshir, A., Dabbagh Mohammadi Nasab, A., Hamidi, A., and Gholi Pour, M. 2000. The Ecology of Intercropping (translated). Jahad-e Daneshgahi of Mashhad Press, Mashhad, Iran. 222 pp. (In Persian)
  16. Kamkar, B., Koocheki, A., Nassiri Mahallati, M., Teixeira da Silva, J.A., Rezvani Moghaddam, P., and Kafi, M. 2011. Fungal diseases and inappropriate sowing dates, the most important reducing factors in cumin fields of Iran, a case study in Khorasan provinces. Crop Protection 30: 208-215.
  17. Keating, B.A., and Carberry, P.S. 1993. Resource capture and use in intercropping: solar radiation. Field Crops Research 34: 273-301.
  18. Koocheki, A. 2001. Sustainable Agriculture. Jahad-e Daneshgahi of Mashhad Press, Mashhad, Iran. 316 pp. (In Persian)
  19. Koocheki, A. and Khajeh Hosseini, M., 2008. Modern Agronomy. 2nd Edition. Jihad Daneshgahi of Mashhad, Mashhad, Iran. 704 pp. (In Persian)
  20. Koocheki, A., Nassiri Mahallati, M., Madani, F., Feyzi, H., and Amir Moradi, S. 2009. Evaluation of radiation interception and use by Maize and Bean intercropping canopy. Journal of Agroecology 1(1): 13-23. (In Persian with English Summary)
  21. Kumar, A., Pandey, V., Shekh, A.M. and Kumar, M. 2008. Radiation use efficiency and weather parameter influence during life cycle of Soybean (Glycine max L.) Production as well accumulation of dry matter. American-Eurasian Journal of Agronomy (2): 41-44.
  22. Majd Nasiri, B., and Ahmadi, M.R. 2000. Effect of planting season and density on light distribution and interception in canopy in different safflower (Carthamus tinctorious L.) genotypes. Iranian Journal of Agriculture Science 36(1): 63-73. (In Persian with English Summary)
  23. Mazaheri, D. 1994. Intercropping. University of Tehran Press. Tehran, Iran. 262 pp. (In Persian)
  24. Mirhashemi, S.M., A. Koocheki, A., Parsa. M., and Nassiri Mahallati, M. 2008. Evaluating the benefit of Ajowan and Fenugreek intercropping in different levels of manure and planting pattern. Iranian Journal of Field Crops Research 7(1): 269-279. (In Persian)
  25. Nassiri Mahallati, M. 2000. Modeling of the processes of growth of crop plants. Jihad-e Daneshgahi of Mashhad Press, Mashhad, Iran. 274 pp. (In Persian)
  26. Nassiri Mahallati, M., Koocheki, A., and Jahan, M. 2011. Radiation uptake and use efficiency in relay intercropping and consecutive culture of winter wheat and maize. Iranian Journal of Field Crops Research 8(6): 878-890. (In Persian with English Summary)
  27. Nassiri Mahallati, M., Koocheki, A., Rezvani Moghaddam, P., and Beheshti, A., 2001. Agroecology (translated). Ferdowsi University of Mashhad Publication, Mashhad, Iran. 459 pp. (In Persian)
  28. Patricio, S., Ramirezb, M., and Pinochetb, D. 2012. Radiation interception and radiation use efficiency of wheat and pea under different P availabilities. Field Crops Research 127: 44–50.
  29. Sinclair, T.R., and Muchow, R.C. 1999. Radiation use efficiency. Advances in Agronomy 65: 215-265.
  30. Spitters, C.J.T, Van Keulen, H. and Van Kraalingen, D.W.G. 1989. A Simple and Universal Crop Growth Simulator: SUCROS87. In: Simulation and Systems Management in Crop Protection. (Eds). R. Rabbinge, S.A. Ward, and H.H. Van Laar,). Wageningen, The Netherlands p. 147-181.
  31. Tsubo, M., Walker, S., and Ogindo, H.O. 2005. A simulation model of cereal–legume intercropping systems for semi-arid regions I. Model development. Field Crops Research 93: 10-22.
  32. Wells, R., and Faden, M. 1991. Soybean growth response to plant density. Relationships among canopy photosynthesis, leaf area and light interception. Crop Science 31: 805-810.
  33. YiKa, Z., FanJun, C., Long, L., YanHua, C., BingRan, L., YuLing, Z., LiXing, Y., FuSuo, Z. and GuoHua, M. 2012. The role of Maize root size in phosphorus uptake and productivity of Maize/Faba bean and Maize/Wheat intercropping systems. Life science. Science China 55(11): 993-1001.