مطالعه اثرات زیست‌محیطی تولید گیاهان روغنی در اردبیل با استفاده از ارزیابی چرخه حیات

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 گروه زراعت، دانشکده کشاورزی، دانشگاه محقق اردبیلی

3 گروه مهندسی آب، دانشکده علوم پایه، دانشگاه محقق اردبیلی

4 محقق اردبیلی

چکیده

هدف از این تحقیق ارزیابی اثرات محیط زیستی تولید گیاهان روغنی شامل سویا (Glycine max L.)، کلزا (Brassica napus Rapeseed.) و آفتابگردان (Helianthus annuus L.) در استان اردبیل بود. ارزیابی چرخه حیات به منظور ارزیابی مقایسه بارهای محیط زیستی، تقاضای آب و کاربری زمین این سه نوع گیاه روغنی به کار گرفته شد. چهار طبقه اثر محیط زیستی مورد استفاده در این روش مورد استفاده قرار گرفت. این چهار طبقه اثر شامل مردابی شدن، اسیدی شدن، گرمایش جهانی و اکسیداسیون فتوشیمیایی است. تقاضای آب و کاربری زمین دیگر طبقه اثرهایی است که در این مطالعه مورد ارزیابی قرار گرفته است. هرسه گیاه زراعی برای طبقه اثرهای مختلف دارای الگوی یکسانی بودند. نتایج این تحقیق نشان داد که آفتابگردان در پنج طبقه اثر از شش طبقه اثر انتخابی دارای بیشترین اثرات محیط زیستی است، چراکه دارای محصول کمتر و تقاضای آب و انرژی بیشتری است. نتایج نشان داد که تولید 1 تن آفتابگردان، سویا و کلزا به‌ترتیب نیازمند 426، 370 و 471 متر‌مربع زمین است. در این مطالعه مشخص شد که اثرات محیط زیستی سه گیاه زراعی عمدتاً از کودهای شیمیایی، کود دامی، سوخت دیزل و مصرف الکتریسیته برای آبیاری حاصل می شود. می توان گفت که اثرات مرتبط با این نهاده ها مربوط به تولید و فرآوری آن‌ها قبل از استفاده در مزرعه هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the environmental impacts of oil seed crops production in by using the life cycle assessment in Ardabil province

نویسندگان [English]

  • Majid Dekamin 1
  • Morteza Barmaki 2
  • Amin Kanoni 3
  • Seyed reza Mosavi 4
1 University of Mohaghegh Ardabili
2 University of Mohaghegh Ardabili
3 University of Mohaghegh Ardabili
4 Department of environment, Zanjan, Iran
چکیده [English]

Introduction
The controversy about sustainable agriculture has been extended to consider the impact of agricultural production. Population growth has increased the need for food, water, and renewable energy resources, which requires development of new knowledge about and technology for production systems using the sustainable development frameworks. As a consequence of agricultural reliance on natural resources and processes, a complicated relationship exists between agriculture and the environment. Agricultural activities can be both advantageous and disadvantageous for the environment. Agricultural activities have grown quickly over recent decades in Iran; their environmental impacts have also escalated. Major environmental issues in Iran include water shortages, nitrate leaching into ground water, soil erosion, and the release of pesticides and P-based fertilizers into water resources. Since there is a legal gap in assessing the environmental impact of agricultural activities in Iran; so little attention has been paid to reducing environmental emissions and use of resources of the agricultural products. Standard procedures should be used to assess agricultural activity to introduce environmentally-friendly practices and products. Crops production is a system with high environmental impacts. Different tools are available for assessment of the environmental impact of agricultural products. The most comprehensive of these is life cycle assessment (LCA). The present study used LCA to evaluate the materials used, energy consumption, and related environmental emissions from cradle to farm gate for soybean (Glycine max), sunflower (Helianthus annuus L.), and canola (Brassica napus) crops in Ardabil province of Iran.
Materials and methods
The basic guidelines for administering an LCA delineated in ISO standards 14040 and 14044 were observed in this research. LCA is an internationally standardized holistic assessment framework and is widely used to identify potential environmental emissions and resources throughout a product's lifecycle, particularly in the agro-food sector. Literature on LCA has demonstrated potential applications of LCA in agriculture. All environmental impacts were analyzed using Simapro v 8.0.1 software. The goal of the current analysis was to examine the environmental performance of conventional cropping practices of oilseed crops at the local level in Iran. The scope of the present research was limited to oilseed production system using all inputs and outputs of agricultural materials, energy, and water from cradle to farm gate in Ardabil. All materials, emissions, and water and energy consumption measured per 1 ton of a crop at 13% humidity are denoted as a FU. A system boundary covers the entire production system for soybean, sunflower, and canola. The inventory data was collected based on the commercial production of each crop. The goal of inventory questionnaire was to evaluate type of machinery, inputs and outputs and irrigation. Also, data collection involved face-to-face interview with farmers.
The impact categories investigated in this research were eutrophication, acidification, global warming potential, and photochemical oxidation. In addition, the impacts of water dependence and land use were examined.
Results and discussion
Only the classification and characterization stages of the LCA were considered in this research. The results showed that sunflower demonstrated a higher environmental load in five of the six categories because of its lower seed yield and higher water and energy demands. The results indicate that production of 1 ton of soybean and canola requires 370 and 471 m2 of land, respectively. Production of same quantity of sunflower required 426 m2 of land. Sunflower required 1.59 and 1.25 times more water than the canola and soybean respectively, to produce the same quantity of oilseed. It was found that the effects of these three crops comes generally from manufactured fertilizer, manure, diesel combustion, agricultural practices, and electricity for irrigation.
Conclusion
Generally, it can be said that the indirect effects associated with these inputs are related to producing and processing, which had higher impacts than those of the direct effects.

کلیدواژه‌ها [English]

  • Agriculture
  • Environmental impacts
  • Iran
  • land use
  • life cycle assessment
  • Oilseed crops
  • Optimization
Abeliotis, K., Detsis, V., and Pappia, C. 2013. Life cycle assessment of bean production in the Prespa National Park, Greece. Journal of Cleaner Production 41: 89-96.
Asgharipour, M.R., Mondani, F., and Riahinia, S. 2012. Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. Energy 44: 1078-1084.
Audsley, E., Brander, M., Chatterton, J.C., Murphy-Bokern, D., Webster, C., and Williams, A.G. 2010. How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope reduction by 2050. Report for the WWF and Food Climate Research Network.
Balali, M., Moameni, A., Malakouti, M., and Afkhami, M. 2003. Balanced soil fertilization towards sustainable agriculture and food security in Iran. Congress Global Food Security and the Role of Sustainable Fertilization, Iran, Tehran p. 26-28. (In Persian)
Beccali, M., Cellura, M., Iudicello, M., and Mistretta, M. 2009. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of Italian citrus-based products. Environmental Management 43: 707-724.
Bernesson, S., Nilsson, D., and Hansson, P.A. 2004. A limited LCA comparing large-and small-scale production of rape methyl ester (RME) under Swedish conditions. Biomass and Bioenergy 26: 545-559.
Blengini, G.A., and Busto, M. 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management 90: 1512-1522.
Brentrup, F., and Küsters, J. 2000. 10. Methods to estimate potential N emissions related to crop production. Agricultural Data for Life Cycle Assessments 81: 146-156.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2001. Application of the Life Cycle Assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilisers. European Journal of Agronomy 14: 221-233.
Cederberg, C., and Stadig, M. 2003. System expansion and allocation in life cycle assessment of milk and beef production. The International Journal of Life Cycle Assessment 8: 350-356.
Cellura, M., Longo, S., and Mistretta, M. 2012. Life Cycle Assessment (LCA) of protected crops: an Italian case study. Journal of Cleaner Production 28: 56-62.
de Vries, M., and de Boer, I.J. 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science 128: 1-11.
Dekamin, M., Veisi, H., Safari, E., Liaghati, H., Khoshbakht, K., and Dekamin, M.G. 2015. Life cycle assessment for rainbow trout (Oncorhynchus mykiss) production systems: a case study for Iran. Journal of Cleaner Production 91: 43-55.
Dutilh, C.E., and Kramer, K.J. 2000. Energy consumption in the food chain: comparing alternative options in food production and consumption. Ambio: A Journal of The Human Environment 29: 98-101.
Fadaei, A., Dehghani, M.H., Nasseri, S., Mahvi, A.H., Rastkari, N., and Shayeghi, M. 2012. Organophosphorous pesticides in surface water of Iran. Bulletin of Environmental Contamination and Toxicology 88: 867-869.
FAO. 2007. State of the World's Forests.
Foster, C., Green, K., and Bleda, M. 2007. Environmental impacts of food production and consumption: final Report to the Department for Environment Food and Rural Affairs, Italy, Rom.
Gallego, A., Hospido, A., Moreira, M.T., and Feijoo, G. 2011. Environmental assessment of dehydrated alfalfa production in Spain. Resources, Conservation and Recycling 55: 1005-1012.
Granatstein, D., and Kupferman, E. 2006. Sustainable horticulture in fruit production. XXVII International Horticultural Congress-IHC2006: International Symposium on Sustainability through Integrated and Organic 767, p. 295-308.
Guinee, J.B. 2002. Handbook on Life Cycle Assessment Operational Guide to the ISO Standards. The International Journal of Life Cycle Assessment 7: 311-313.
Hamdallah, G. 2000. Soil fertility management: the need for new concepts in the region. Proceedings of the FAO Regional Workshop on Soil Fertility Management through Farmer Field Schools in the Near East, Amman, p. 2-5.
Ingwersen, W.W. 2012. Life Cycle Assessment of fresh pineapple from Costa Rica. Journal of Cleaner Production 35: 152-163.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life Cycle Assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18: 336-345.
ISO. Technical Committee ISO/TC 207, E.m.S.S., Life Cycle Assessment. 2006. Environmental Management: Life Cycle Assessment: Principles and Framework. ISO.
Jalali, M. 2011. Nitrate pollution of groundwater in Toyserkan, western Iran. Environmental Earth Sciences 62: 907-913.
Kafilzadeh, F., Shiva, A.H., Malekpour, R., and Azad, H.N. 2012. Determination of organochlorine pesticide residues in water, sediments and fish from Lake Parishan, Iran. World Journal of Fish and Marine Sciences 4: 150-154.
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., and Clark, S. 2014. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production 73: 183-192.
Mahvi, A., Nouri, J., Babaei, A., and Nabizadeh, R. 2005. Agricultural activities impact on groundwater nitrate pollution. International Journal of Environmental Science and Technology 2: 41-47.
Malakouti, M., Khoughar, Z., and Khademi, Z. 2004. Innovative approaches to balanced nutrition of wheat-A compilation of papers. Agronomy Department. Ministry of Jihad-e-Agriculture. Sana Publication. Co., Tehran, Iran. (In Persian)
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval., S.H., and Hermansen, J.E. 2013. Potential greenhouse gas emission reductions in soybean farming: a combined use of life cycle assessment and data envelopment analysis. Journal of Cleaner Production 54: 89-100.
Nassiri Mahallati, N., and Koocheki, A. 2017. Life cycle assessment of wheat production systems in Iran. Journal of Agroecology 9(4): 972-992. (In Persian with English Summary)
Nemecek, T., Heil, A., Huguenin, O., Meier, S., Erzinger, S., Blaser, S., Dux, D., and Zimmermann, A. 2007. Life cycle inventories of agricultural production systems. Final Report Ecoinvent V 2.0 No 15.
O’Brien, D., Shalloo, L., Patton, J., Buckley, F., Grainger, C., and Wallace, M. 2012. A Life Cycle Assessment of seasonal grass-based and confinement dairy farms. Agricultural Systems 107: 33-46.
Romero-Gamez, M., Audsley, E., and Suarez-Rey, E.M. 2014. Life Cycle Assessment of cultivating lettuce and escarole in Spain. Journal of Cleaner Production 73: 193-203.
Ruviaro, C.F., Gianezini, M., Brandão, F.S., Winck, C.A., and Dewes, H. 2012. Life Cycle Assessment in Brazilian agriculture facing worldwide trends. Journal of Cleaner Production 28: 9-24.
Sahle, A., and Potting, J. 2013. Environmental Life Cycle Assessment of Ethiopian rose cultivation. Science of the Total Environment 443: 163-172.
Stephenson, A., Dennis, J., and Scott, S. 2008. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Safety and Environmental Protection 86: 427-440.
Talebi, K. 1998. Diazinon residues in the basins of Anzali Lagoon, Iran. Bulletin of Environmental Contamination and Toxicology 61: 477-483.
Tan, K.T., Lee, K.T., and Mohamed, A.R. 2008. Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy 36: 3360-3365.
Tzilivakis, J., Warner, D., May, M., Lewis, K., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85: 101-119.
Williams, A., Audsley, E., and Sandars, D. 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities: Defra Project Report IS0205. Zu finden in: http://randd. defra. gov. uk/Default. aspx.