تأثیر تغییر اقلیم برتولید سیب‌زمینی (Solanum tuberosum L.) در منطقه فریدون‌شهر اصفهان I- رشد و نمو

نوع مقاله : علمی - پژوهشی


1 دانشگاه پیام نور

2 دانشگاه شهرکرد


هدف از این مطالعه شبیه‌سازی اثرات تغییر اقلیم بر مراحل فنولوژیکی، شاخص سطح برگ، عملکرد زیست‌توده و غده سیب‌زمینی (Solanum tuberosum L.) در شرایط تغییر اقلیم آینده منطقه فریدون‌شهر اصفهان بود. برای این منظور پیش بینی دو مدل گردش عمومی HadCM3 و IPCM4 تحت سه سناریوی A1B، B1 و A2 در سال‌های 2030، 2060 و 2090 به‌کار گرفته شد. برای شبیه‌سازی پارامترهای اقلیمی از مدل LARS-WG و برای شبیه‌سازی مراحل رشد سیب‌زمینی از مدل SUBSTOR-Potato و نرم‌افزار DSSAT استفاده گردید. نتایج ارزیابی مدل SUBSTOR-potato نشان داد مدل برآورد مناسبی (RMSE≤10) برای پیش‌بینی صفات عملکرد غده، حداکثر شاخص سطح برگ، روز تا گلدهی و روز تا رسیدگی فیزیولوژیک گیاه سیب‌زمینی در شرایط آب و هوایی فریدون‌شهر دارا می‌باشد. نتایج شبیه‌سازی نشان داد که در تمام سناریوهای مورد بررسی، رشد و نمو سیب-زمینی تحت تأثیر پدیده تغییر اقلیم در آینده قرار خواهد گرفت و عملکرد آن نسبت به سال مبنا کاهش خواهد یافت. به‌طوری‌که بیشترین کاهش عملکرد غده در سناریوی A2 و در سال 2090 برای هر دو مدل گردش عمومی HadCM3 و IPCM4 شبیه‌سازی شد. میزان کاهش عملکرد غده در سناریوی B1 نسبت به دو سناریوی دیگر کمتر بود. گیاه سیب‌زمینی در سناریوی A2 در مقایسه با دو سناریوی دیگر از شاخص سطح برگ کمتری برخوردار بود. همچنین طول مرحله کاشت تا گلدهی و مدت زمان رسیدگی سیب‌زمینی در منطقه فریدون‌شهر در شرایط تغییر اقلیم آینده نسبت به شرایط فعلی کاهش خواهد یافت که دلیل اصلی این کاهش، افزایش درجه حرارت (بسته به سناریوهای مختلف بین 1/1 تا 4/5 درجه سانتی‌گراد) و در نتیجه افزایش سرعت رشد گیاه در شرایط تغییر اقلیم آینده می‌باشد.


عنوان مقاله [English]

The Effect of Climate Change on Potato (Solanum tuberosum L.) Production in Feridonshahr Region of Isfahan I- Growth and Development

نویسندگان [English]

  • zohrab adavi 1
  • Mahmoud Reza Tadayon 2
1 Payame Noor University
2 Shahrekord University
چکیده [English]

The historical trend of Iran annual average temperature of shows a 0.05 °C.year-1 increase which indicates that future emissions of greenhouse gases will continue to increase temperature and consequently cause to climatic change in the country. This change in environment will have a serious impact on different growth and development processes of crops. Increasing temperature could affect physiological processes like photosynthesis, respiration and partitioning of photo-assimilates. The negative impacts of climate change on potato production are reported in the literature. The present study was conducted to quantify the potential impacts of climate change on phenology, growth and tuber yield of potato.

Materials and Methods
The climate projections of Hadley Centre Coupled Model version 3 (HadCM3), France and Institute of Pierre Simon Laplace (IPCM4), United Kingdom, was used to simulate the future conditions based on A2, B1 and A1B SRES (Special Report on Emissions Scenarios) scenario at three time periods including 2015-2045 (2030), 2046-2075 (2060) and 2076-2105 (2090)with a baseline of 1988-2012 (2012). For each period, the year shown in the parenthesis was considered as target year. The SUBSTOR-Potato model, one of the sixteen models embedded within the DSSAT (v4.5) program, was used to simulate the baseline and future yield and growth characteristics of potato. The model was calibrated and validated during 2012 and 2013 with two different farm experiments. In these experiments, the effects of different amounts of nitrogen fertilizer on yield and morphological traits of three potato cultivars were investigated. Six levels of nitrogen fertilizer (0, 50, 100, 200, 300 and 400 kg urea. ha-1) and three commonly planted potato cultivars in the region (Arinda, Santeh and Agria as early, medium and late maturity varieties, respectively) were studied as a factorial arrangement based on a randomized complete block design with three replications. Several criteria were used to quantify the difference between simulated and observed data. The root mean-squared error (RMSE-N (%)) was computed to measure the coincidence between measured and simulated values, while mean deviation (RMD) was calculated to evaluate the systematic bias of the model and model efficiency (ME) to estimate the model performance in relation to the observed mean.

Results and Discussion
The evaluation of the SUBSTOR-Potato model showed adequate accuracy for simulating tuber yield, LAI, DTA and DTH of potato (Table 3). The results showed that the RMSE-N (%) was low for all the parameters. In both GCMs, number of days from planting to anthesis stages of potato decreased in compare to baseline of Fereydoon-Shahr region. Modeled values of day to anthesis in all scenarios and models (except B1 scenario in HadCM3 model) showed a decrease over the time, with the lowest amount in 2090. Under all scenarios and GCMs, the length of planting to harvest period will be declined in compareto baseline. Tuber yield will decline in compare to the baseline with a reduction range from 11.21% to 27.53% for HadCM3 model and from 12.60% to 30.58%for IPCM4 model. In HadCM3, B1 scenario in 2030 had the least difference with the baseline period (29.15 t ha-1) (Table 5), which is about 11.21% lower than the current condition. In IPCM4 model, the highest tuber yield was simulated under B1 scenario in 2030 (25.48 t ha-1), which shows a reduction of about 12.60% in compare to the baseline. A2 scenario in both GCMs showed the lowest tuber yield in 2090 (21.13 t ha-1 for HadCM3 and 20.24 t ha-1 for IPCM4), means a drop of 27.53% and 30.58% in tuber yield in compare to the baseline. In fact, in A1B, A2 and B1 scenarios, a decline of 20.29%, 27.53% and 16.04% in tuber yield for HadCM3 and a reduction of 20.88%, 30.58% and 17.90% for IPCM4 model was simulated, respectively.
The results indicated that tuber yield of common varieties of potato under all scenarios (A1B, A2 and B1) in both GCMs and during the evaluated years will decline in compare to the baseline in Fereydoon-shahr region.

کلیدواژه‌ها [English]

  • GCM
  • LARS Model
  • scenario
  • simulation
Afzali Nya, B. 2006. Agronomy Potato. Publications of Agriculture Organization, Jiroft, Iran. (In Persian)
Alexandrov, V.A., and Hoogenboom, G. 2000. The impact of climate variability and change crop yield in Bulgaria. Agricultural Forest Meteorology 104: 315-327.
Asseng, S., Jamieson, P.D., Kimball, B., Pinter, P., Sayre, K., Bowden, J.W., and Howden, S.M. 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research 85: 85-102.
Bannayan, M., and Hoogenboom, G. 2008. Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-Nearest neighbor approach. Environment Model Software 3: 703-713.
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillere, J.P., Henault, C., Maraux, F., Seguin, B., and Sinoquet, H. 2002. An overview of the crop model STICS. Europian Journal of Agronomy 18: 309-332.
Carbonell-Bojollo, R., Gonzalez-Sanchez, E.J., Veroz-Gonzalez, O., and Ordoñez-Fernandez, R. 2011. Soil management systems and short term CO2 emissions in a clayey soil in southern Spain. Science of the Total Environment 409: 2929-2935.
Challinor, A.J., and Wheeler, T.R. 2008. Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology 148: 343-356.
Daccache, A., Weatherhead, E.K., Stalham, M.A., and Knox, J.W. 2011. Impacts of climate change on irrigated potato production in a humid climate. Agricultural and Forest Meteorology 151: 1641-1653.
Fabeiro, C., Olalla, F., and de Juan, J.A. 2001. Yield and size of deficit irrigated potatoes. Agriculture Water Management 48: 255-266.
Fischer, G., Frohberg, K., Parry, M.L., and Rosenzweig, C. 1994. Climate change and world food supply, demand and trade: who benefits, who loses? Global Environmental Change 4(1): 7-23.
Goudriaan, J., and Van Laar, H.H. 1994. Modelling Potential Crop Growth Processes. Textbook wityh exercises. Kluwer Academic Publishers, Dordrecht, the Netherlands.
Hodges, T., and Ritchie, J.T. 1991. The CERES-Wheat Phenology Model. p. 133-141. In T. Hoodges (Ed.) Predicting Crop Phenology. CRC Press. Boca Raton, FL.
Holden, N.M., Brereton, A.J., Fealy, R., and Sweeney, J. 2003. Possible change in Irish climate and its impact on barley and potato yields. Agricultural and Forest Meteorology 116: 181-196.
Hoogenboom, G., Jones, J.W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, J.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., and Tsuji, G.Y. 2010. Decision Support System for Agrotechnology Transfer (DSSAT), University of Hawaii, Honolulu, Hawaii, USA.
IPCC. 2007. Summary for Policy Makers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge University Press, Cambridge.
Jones, C.A., and Kiniry, J.R. 2003. CERES-Maize: A Simulation Model of Maize Growth and Development Texas A&M University Press, College Station, TX, USA.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., and Ritchie, J.T. 2003. The DSSAT cropping system model. Europian Journal of Agronomy 18: 235-265.
Kafi, M., Zand, A., Kamkar, B., Mahdavi Damghani, A.M., Abbasi, F., and Sharifi, H. 2009. Plant Physiology. University of Mashhad Publication, Mashhad, Iran. (In Persian)
Koocheki, A., and Nassiri Mahallati, M. 2009. Impact of climate change with increasing CO2 concentration on wheat yield in Iran and evaluation of adaptation strategies. Iranian Journal of Agricultural Research 6: 139-153. (In Persian with English Summary)
Koocheki, A., Soltani, A., Sharifi, H., and Kamali, G.A. 2002. The effects of climate change on growth, development and yield of sunflower and pea Tabriz irrigated and rainfed conditions. Agricultural Science and Technology 15(1): 155-164. (In Persian with English Summary)
Krishnan, P., Swain, D.K., Chandra Bhaskar, B., Nayak, S.K., and Dash, R.N. 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment 122: 233-242.
Lawlor, D.W., and Mitchell, R.A.C. 2000. Crop Ecosystem Responses to Climatic Change: Wheat. Climate Change and Global Crop Productivity (Eds Reddy, K.R. & Hodges, H.F.), 57-80. CAB International, Cambridge.
Loague, K., and Green, R.E. 1991. Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contam Hydrology 7: 51-73.
Mall, R.K., and Aggarwal, P.K. 2002. Climate change and rice yields in diverse agro-environments of India. I. Evaluation of impact assessment models. Climate Change 52: 315-330.
Mera, R.J., Niyogi, D., Buol, G.S., Wilkerson, G.G., and Semazzi, F.H.M. 2006. Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change 54: 163-182.
Meza, F.J., Silva, D., and Vigil, H. 2008. Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21-30.
Moradi, R., Koocheki, A., and Nassiri Mahallati, M. 2014. Adaptation of maize to climate change impacts in Iran. Mitigation and Adaptation Strategies for Global Change 19: 1223-1238.
Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology 10: 282-290.
Nassiri Mahallati, M., Koocheki, A., and Rezvani Moghaddam, P. 2003. The Effect of Global Climate Change on Agricultural Production. University of Mashhad Publication, Mashhad, Iran. (In Persian)
Parry, M., Rosenzweig, C., Inglesias, A., Livermore, M., and Gischer, G. 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14: 53-67.
Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E., and Thomas, J.M.G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95: 398-411.
Rahmani, M., Jami Alahmadi, M., Shahidi, A., and Hadizadeh Azghandi, N. 2015. Effect of climate change on the growth stages of the growth and water requirements of wheat and barley (Case Study: Birjand Plain). Journal of Agroecology 7(4): 443-460. (In Persian with English Summary)
Reddy, K.R., and Hodges, H.F. 2000. Climate Change and Global Crop Productivity. CABI International, Cambridge.
Reidsma, P., Ewert, F., Lansink, A.O., and Leemans, R. 2010. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Europian Journal of Agronomy 32: 91-102
Sadr Gaen, S.H., Nakhjavani Moghaddam, H., and Baghani, J. 2011. Effect of spacing and different levels of water on potato yield in drip irrigation method (type) in Firouzkouh. Journal of Irrigation and Drainage 1: 99-108. (In Persian with English Summary)
Salinger, M.J. 2005. Climate variability and change: past, present and future- an overview. Climate Change 70: 9-29.
Stastna, M., Toman, F., and Dufkova, J. 2010. Usage of SUBSTOR model in potato yield prediction. Agricultural Water Management 2: 286-290.
Van Oijen, M., and Ewert, F. 1999. The effects of climatic variation in Europe on the yield response of spring wheat cv. Minaret to elevated CO2 and O3: an analysis of open-top chamber experiments by means of two crop growth simulation models. Europian Journal of Agronomy 10: 249-264.
Wolf, J., Adger, W., Lorenzoni, I., Abrahamson, V., and Raine, R. 2010. Social capital, individual responses to heat waves and climate change adaptation: An empirical study of two UK cities. Global Environmental Change 20: 44-52.
Yauri, H. 1997. Validation de un modelo para similar el crecimiento del cultivo de papa. PhD disseration, Universidad Nacional Agraria. La Molina. Peru.