ارزیابی جذب و کارایی مصرف نور در کشت مخلوط ذرت (Zea mays L.) وسیب زمینی Solanum tuberosum L.))

نوع مقاله : علمی - پژوهشی

نویسندگان

؟

چکیده

تجمع مادة خشک گیاهان ارتباط خطی با تشعشع فعال فتوسنتزی (PAR) تجمعی دارد و یکی از راههای افزایش جذب تشعشع در سیستم های زراعی استفاده از کشت مخلوط است. بعلاوه کشت مخلوط ممکن است کارایی مصرف نور گیاهان را نیز بهبود ببخشد. این مطالعه با هدف ارزیابی جذب و کارایی مصرف نور ذرت (Zea mays L.) و سیب زمینی Solanum tuberosum L.)) در کشت مخلوط انجام گرفته است. تیمارهای آزمایش شامل: تک‌کشتی ذرت (MC)، تک‌کشتی سیب‌زمینی (MP)، کشت مخلوط نواری (S)، کشت مخلوط I25، I50، I75 (به ترتیب با 25% ، 50% و 75% همپوشانی ردیف های ذرت و سیب‌زمینی در تیمار نواری) و کشت مخلوط ردیفی(R) بودند. نتایج آزمایش نشان داد که کارایی مصرف نور ذرت در تمام تیمارهای مخلوط نسبت به تک کشتی افزایش پیدا کرد، در حالیکه کارایی مصرف نور سیب زمینی در کشت مخلوط کاهش یافت. میانگین کارایی مصرف نور ذرت در طول فصل رشد از 65/2 در تیمار MC تا 27/3 گرم بر مگاژول تشعشع فعال فتوسنتزی در تیمار R و میانگین کارایی مصرف نور سیب زمینی نیز از 27/1 در تیمار R تا 47/1 گرم بر مگاژول تشعشع فعال فتوسنتزی در MP متغیر بود. در کل هر چه مخلوط از آرایش ردیفی، که فاصلة ردیف های ذرت در آن دو برابر کشت خالص بود، به سمت آرایش نواری،‌ که فاصلة ردیف های ذرت در آن مشابه تک کشتی بود، تمایل پیدا کرد (یعنی به ترتیب تیمار کشت مخلوط ردیفی، I75، I50، I25، و کشت مخلوط نواری) کارایی مصرف نور نیز به تدریج کاهش یافت، زیرا تعداد ردیف هایی که فاصلة آنها دو برابر کشت خالص شد کاهش پیدا کرد. هرچه آرایش مخلوط از نواری به سمت ردیفی تمایل پیدا کرد (یعنی به ترتیب تیمارهای I25، I50، I75، و کشت مخلوط ردیفی) تعداد ردیف های بیشتری از سیب زمینی در زیر سایة مستقیم ذرت قرار گرفت و این مسئله سبب کاهش تدریجی کارایی مصرف نور شد. جهت حصول نتایج بهتر پیشنهاد می شود که تراکم های مختلف این دو گیاه و همچنین سیستم های تأخیری مورد ارزیابی قرار بگیرد..

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of radiation absorption and use efficiency in potato (Solanum tuberosum L.) /corn (Zea mays L.) intercropping

نویسندگان [English]

  • Farzad Hosseinpanahi
  • Alireza Koocheki
  • Mehdi Nassiri Mahallati
  • Reza Ghorbani
؟
چکیده [English]

Plant dry matter accumulation has a linear relation with accumulative photosynthetically active radiation (PAR). Intercropping could be a strategy for increasing light absorption in agronomic systems and it may improve radiation use efficiency (RUE). Thus this study was conducted in order to evaluate radiation absorption and use efficiency in potato (Solanum tuberosum L.) –corn (Zea mays L.) intercropping. The experimental treatments were consisted of monocropping corn (MC), monocropping potato (MP), strip intercropping (S), intercropping with three different patterns (I25, I50 and I75 are 25%, 50% and 75% overlaps of corn and potato rows in strip treatment, respectively) and row intercropping (R). Results showed that corn RUE increased in all intercropping treatments compared with mono-cropping plots while potato RUE reduced in the intercropping plots. Mean of corn RUE in growing season was from 2.65 g.MJ-1 in the MC up to 3.27 g.mJ-1 in the R. Mean of potato RUE was from 1.27 g.MJ-1 in the R to 1.47 g.MJ-1 in MP treatment. With shifting row intercropping, where row spacing was doubled compared with mono-crop corn plots, towards strip intercropping, where distance of rows was similar to mono-crop corn plots, RUE decreased. This could be due to decreasing the number of rows that their distances were double of mono-crop plots. Moreover, with shifting from strip intercropping towards row intercropping (i.e. I25, I50, I75 and R treatment, respectively), the number of potato rows that were under the corn direct shading increased and this resulted to decreasing potato RUE. Further studies on the effects of various densities of potato and corn plants and delayed intercropping systems for these crops are required.

کلیدواژه‌ها [English]

  • Photosynthetic active radiation
  • Row intercropping
  • Shading
  • Strip intercropping
1- Akmal, M., and Janssens, M.J.J. 2004. Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Research 88:143-155.
2- Awal, M.A., Koshi, H., and Ikeda, T. 2006. Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology 139:74-83.
3- Beheshti, A., Koocheki, A., and Nassiri Mahalati, M. 2002. The effect of planting pattern on light interception and radiation use efficiency in canopy of three maize cultivars. Nahal and Bazr 18(4):417-431. (In Persian with English Summary).
4- Boons-prinz, E.R., De Koning, G.H.J., Van Diepen, C.D., and Penning De Vries, F.W.T. 1993. Crop specific simulation parameters for yield forecasting across the European Community. Simulation Reports, CABO-TT, no: 32.
5- Caldiz, D.O., Haverkort, A.J., and Struik, P.C. 2002. Analysis of a complex crop production system in interdependent agro-ecological zones: a methodological approach for potatoes in Argentina. Agricultural Systems 73: 297–311.
6- Ceotto, E., and Castelli, F. 2002. Radiation use efficiency in flue-cured tobacco (Nicotiana tabacum L.): response to nitrogen supply, climatic variability and sink limitation. Field Crops Research 74:117-130.
7- Chen, C.T., and Setter, T.L. 2003. Response of tuber cell division and growth to shade and elevated Co2. Annals of Botany 91: 373-381.
8- Ebwongu, M., Adipala, E., Kyamanywa, S., Ssekabembe, C.K., and Bhagsari, A.S. 2001b. Effect of intercropping maize and solanum potato on yield of the component crops in central Uganda. African Crop Science Journal 9(1):83-96.
9- Emam, Y., and Seghateleslami, M.J. 2005. Crop Yield: Physiology and Processes. Shiraz University Press, Shiraz. 593 pp. (In Persian with English summary)
10- Faurie, O., Soussana, J.F., and Sinoquet, H. 1996. Radiation interception, partitioning and use in gross-clover mixtures. Annals of Botany 77:35-45.
11- Goudriaan, J., and Van Laar, H.H. 1993. Modelling Potential Crop Growth Processes. Kluwer Academic Press.
12- Haj-Sayyed-Hadi, M.R. 2006. Radiation use efficiency and its relation with potato-weeds competition. PhD dissertation, Faculty of Agriculture, Islamic University of Science and Research Campus, Iran. (In Persian with English Summary).
13- John, L.L., Timothy, J.A., Daniel, T.W., Kenneth, G.C., and Achim, D. 2005. Maize radiation use efficiency under optimal growth conditions. Agronomy Journal 97: 72-78.
14- Khajeh-Pour, M.R. 2004. Industrial Plants (Second Edition). J.had Daneshgahi Press, Isfahan. 564 pp. (In Persian).
15- Khorasan Razavi Meteorological Organization. 2007. Statistics Report database. Available at Web site http://www.razavimet.gov.ir/pages.aspx?pageID=95 (verified at 10 may 2007).
16- Kiniry, J.R., Landivar, J.A., Witt, M., Gerik, T.J., and Wade, L.J. 1998. Radiation use efficiency response to vapor pressure deficit for maize and sorghum. Field Crops Research 56: 265-270.
17- Kooman, P.L., and Haverkort, A.J. 1995. Modelling development and growth of the potato crop influenced by temperature and daylength: In. Smith, D.L., and Hamel, C. 2005. Crop Yield (Physiology and Processes), Translate by Emam, Y., and Seghateleslami, M.J. Shiraz University Press, pp. 376.
18- Krauss, A., and Marschner, H. 1984. Growth rate and carbohydrate metabolism of potato tubers exposed to high temperature. Potato Research 27: 297-303.
19- Midmore, D.J. 1990. Scientific basis and scope for further improvement of intercropping with potato in the tropics. Field Crops Research 25: 3-24.
20- Midmore, D.J., Berrios, D., and Roca, J. 1986a. Potato (Solanum spp.) in the hot tropics. ΙΙ. Soil temperature and moisture modification by mulch in contrasting environments. Field Crops Research 15: 97-108.
21- Midmore, D.J., Berrios, D., and Roca, J. 1988b. Potato (Solanum spp.) in the hot tropics. V. Intercropping with maize and the influence of shade on tuber yield. Field Crops Research 18: 159-176.
22- Midmore, D.J., Roca, J. and Berrios, D. 1986b. Potato (Solanum spp.) in the hot tropics. ΙΙΙ. Influence of mulch on weed growth, crop development and yield in contrasting environments. Field Crops Research 15: 109-124.
23- Midmore, D.J., Roca, J. and Berrios, D. 1988a. Potato (Solanum spp.) in the hot tropics. ΙV. Intercropping with maize and the influence of shade on potato microenvironment and crop growth. Field Crops Research 18: 141-157.
24- Monteith, J.L. 1977. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9: 747-766.
25- Nachigera, G.M., Ledent, J.-F., and Draye, X. 2008. Shoot and root Competition in potato/maize intercropping: effects on growth and yield. Environmental and Experimental Botany 64(2): 180-188.
26- Opoku-Ameyaw, K., and Harris, P.M. 2001. Intercropping potatoes in early spring in a temperate climate. 2: Radiation utilization. Potato Research 44: 63-74.
27- Rosati, A., Metcalf, S.G., and Lampinen, B.D. 2004. A simple method to estimate photosynthetic radiation use efficiency of canopies. Annals of Botany 93: 567-574.
28- Sale, P.J.M. 1976. Effect of shading at different times on the growth and yield of the potato. Australian Journal of Agricultural Research 27: 557-566.
29- Stewart, D.W., Costa, C., Dwyer, D.L., Smith, R.I., and Hamliton, B.L. 2003. Canopy structure, light interception and photosynthesis in maize. Agronomy Journal 95: 1465-1474.
30- Tollenaar, M., and Aguilera, A. 1992. Radiation use efficiency of an old and a new maize hybrid. Agronomy Journal 84:536-541.
31- Tsubo, M., and Walker, S. 2002. A model of radiation interception and use by a maize/bean intercrop canopy. Agricultural and Forest Meteorology 110:203-215.
32- Tsubo, M., Walker, S., and Mukhalam, E. 2001. Comparison of variation use efficiency of mono/inter-cropping systems with different row orientations. Field Crops Research 71: 17-29.
33- Tsubo, M., Walker, S., and Ogindo, H.O. 2005. A simulation model of cereal–legume intercropping systems for semi-arid regions I. Model development. Field Crops Research 93:10-22.
34- Vander Zaag, P., and Demagante, A.C. 1990. Potato (Solanum spp.) in an isohyperthermic environment. V. Intercropping with maize. Field Crops Research 25:157-170.
35- Zhang, L., Vander Werf, W., Bastiaans, L., Zhang, S., Li, B., and Spiertz, J.H. 2008. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107: 29-42.