Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

Document Type : Scientific - Research


1 Department of Agronomy, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

2 Department of Apronomy , Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran,


Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems
Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010). Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010). Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood.
Material and methods
This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage) were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar) were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level.
Results and discussion
Effect of nutrient management was significant on belowground and aboveground biomasses, total weight and net primary productivity. Maximum and minimum of shoot, seed, total weight and aboveground net primary productivity were obtained in chemical fertilizer and control respectively. Nitrogen plays a key role in several physiological crop processes. As a result of increasing N doses, the photosynthetic activity, leaf area index (LAI) and leaf area density (LAD) increase. Maximum and minimum of root weight and belowground net primary productivity were obtained in chemical fertilizer + manure and control respectively. Manure and biochar increased root weight 56/03 and 54/31 percent compared to control respectively that had no significant different to chemical fertilizer. Manure increased root growth, possibly through improved physical properties and increased nutrient and water availability. Manure decreases soil compatibility with increasing of stability of soil structure and soil resilient. Impact of adding manure on improving of root length density has been reported by Mosaddeghi et al. (2009). The increased maize yield in biochar amended soil could be attributed to increased nutrient availability (Chan et al. 2008; Zhang et al. 2010) and to improved soil physical properties indicated by decreased soil bulk density.
The results showed that nutrient management had significant effect on belowground and aboveground biomasses, total weight, below and aboveground net primary productivity and carbon allocated to different organs of corn. Maximum and minimum of belowground and aboveground net primary productivity was obtained in chemical fertilizer, manure+ chemical fertilizer and control respectively. Manure and biochar increased belowground net primary productivity 54/91 and 53/21 percent compared to control respectively that had no significant different to chemical fertilizer. Tillage systems had no significant effect on measured traits. The results showed that with application reduced tillage and manure and biochar can increase belowground net primary production and carbon allocation to belowground organs and by adding root residues to the soil can retain roots carbon and prevent its release into the atmosphere. Therefore with reduction of CO2 amount in atmosphere, climate change and global warming be reduced.


Alvarez, R., and Steinbach, H.S. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104: 1-15.
Atkinson, C.J., Fitzgerald, J.D., and Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337: 1-18.
Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A., and VandenBygaart, A.J., 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment 118: 29-42.
Boroumand Rezazadeh, Z. 2013. Evaluation of carbon sequestration in Iran agroecosystems using empirical models. PhD Dissertation. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Research 45: 629-634.
Dominguez, G.F., Diovisalvi, N.V., Studdert, G.A., and Monterubbianesi, M.G. 2009. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern Pampas. Soil and Tillage Research 102: 93-100.
Fabrizzi, K.P., Garcıa, F.O., Costa, J.L., and Picone, L.I. 2005. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research 81: 57-69.
Fallahi, H.R. 2013. Study of plant diversity and simulation of soil carbon storage using the RothC model under climate change scenarios in the experimental site of the International Carbon Sequestration Project (South Khorasan province), PhD Dissertation. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Fallahi, H.R., Rezvani-Moghaddam, P., Behdani, M.A., Aghhavani-Shajari, M., Jahedi Pour, S., and Yari, A. 2015. Principles of Carbon Sequestration. Jahad Daneshgahi of Mashhad Press, Mashhad, Iran. (In Persian)
Forte, A., Fiorentino, N., Fagnano, M., and Fierro, A. 2017. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil and Tillage Research 166: 167-178.
Ghasemi, A., Ghanbari, A., Fakheri, B.A., and Fanaie, H.R. 2016. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L.) influenced by tillage managements. Journal of Agroecology 7: 499-512. (In Persian with English Summary)
Huang, S., Peng, X., Huang, Q., and Zhang, W. 2010. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma 154: 364-369.
Jeffery, S., Verheijen, F.G.A., Van Der Velde, M., and Bastos, A.C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment 144: 175-187.
Khorramdel, S. 2011. Evaluation of the potential of carbon sequestration and life cycle assesment (LCA) approach in different management systems for corn. PhD Dissertation. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. (In Persian with English Summary)
Khorramdel, S., Koocheki, A., Nassiri Mahallati, M., and Khorasani, R. 2010. Effect of different crop management systems on net primary productivity and relative carbon allocation coefficients for corn (Zea mays L.). Journal of Agroecology 2: 667-680 (In Persian with English Summary)
Küstermann, B., Munch, J.C., and Hülsbergen, K.J. 2013. Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in Southern Germany. European Journal of Agronomy 49: 61-73.
Lal, R. 1989. Conservation tillage for sustainable agriculture: tropics versus temperate environments. Advances in Agronomy 42: 85-197.
Mosaddeghi, M.R., Mahboubi, A.A., and Safadoust, A. 2009. Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil and Tillage Research 104: 173-179.
Nabati Nasaz, M., Gholipouri, A., and Mostafavi Rad, M. 2016. Evaluation of forage yield and important agronomic indices of corn as affected by intercropping systems with peanut and nitrogen rates. Journal of Agroecology 8: 70-81. (In Persian with English Summary)
Nagy, J., 2008. Maize Production. Akademiai Kiado, Budapest.
Rogovska, N., Laird, D.A., Rathke, S.J., and Karlen, D.L. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 230: 340-347.
Shirani, H., Hajabbasi, M.A., Afyuni, M., and Hemmat, A. 2002. Effects of farmyard manure and tillage systems on soil physical properties and corn yield in central Iran. Soil and Tillage Research 68: 101-108.
Smith, J.L., Collins, H.P., and Bailey, V.L. 2010. The effect of young biochar on soil respiration. Soil Biology and Biochemistry 42: 2345-2347.
Steinbeiss, S., Gleixner, G., and Antonietti, M. 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry 41: 1301-1310.
Stone, R.J., and Ekwue, E.I. 1995. Compressibility of some Trinidadian soils as affected by the incorporation of peat. Journal of Agricultural Engineering Research 60: 15-24.
Studdert, G.A., and Echeverria, H.E. 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Science Society of America Journal 64: 1496-1503.
Triplett, G.B., and Dick, W.A. 2008. No-tillage crop production: a revolution in agriculture. Agronomy Journal 100: 153-165.
West, T.O., and Marland, G. 2002. Net carbon flux from agricultural ecosystems: methodology for full carbon cycle analyses. Environmental Pollution 116: 439-444.
Whitman, T., and Lehmann, J. 2009. Biochar-One way forward for soil carbon in offset mechanisms in Africa. Environmental Science and Policy 12: 1024-1027.
Wyngaard, N., Echeverria, H.E., Rozas, H.R.S., and Divito, G.A. 2012. Fertilization and tillage effects on soil properties and maize yield in a Southern Pampas Argiudoll. Soil and Tillage Research 119: 22-30.
Yeboah, E., Ofori, P., Quansah, G., Dugan, E., and Sohi, S. 2009. Improving soil productivity through biochar amendments to soils. African Journal of Environmental Science and Technology 3: 34-41.
Yu, L., Jiao, Y.J., Zhao, X.R., LI, G.T., Zhao, L.X., and Meng, H.B. 2014. Improvement to maize growth caused by biochars derived from six feedstocks prepared at three different temperatures. Journal of Integrative Agriculture 13: 533-540.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., and Crowley, D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment 139: 469-475.
Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., and Zhang, X. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil 351: 263-275.
Zhang, H., Xu, M., and Zhang, F. 2009. Long-term effects of manure application on grain yield under different cropping systems and ecological conditions in China. Journal of Agricultural Science 147: 31-42.
Zheng, H., Wang, Z., Deng, X., Herbert, S., and Xing, B. 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206: 32-39.
Zhengchao, Z., Zhuoting, G., Zhouping, S., and Fuping, Z. 2013. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. European Journal of Agronomy 45: 20-26.