Evaluation of radiation interception and use by maize and bean intercropping canopy

Document Type : Scientific - Research


1 Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Assistant Professor, Department of Agriculture, Payam Noor university, Tehran, Iran


Intercropping is one of the management methods for crop production and leads to improvement of resource absorption and use by plants. Based on this purpose the present field study was conducted to evaluate radiation absorption and uses efficiency in corn and bean strip intercropping at the farm of the Faculty of Agriculture, Ferdowsi University of Mashhad, Iran during 2009. The experiment was set up in completely randomized block with three replications. The experiment constituted 6 treatments: sole crops of maize and bean, maize/bean strip intercropping of 2, 3, 4 and 5 rows of maize and bean plants. This experiment was conducted in the low input production system. Each plot was 4×7.5 m in which within each plot the experimental treatments were based on replacement design. Results indicated that leaf area index, light absorption, total dry matter and radiation use efficiency of maize and bean increased in all intercropping treatments in comparison with sole cropping. Increasing of width of strip in the intercropping treatments in comparison with strip of 2 rows, with the exception of the radiation use efficiency (14.5% and 8.3%), lead to decreased leaf area index (34.2% and 5.5%), light absorption (20.5% and 11.2%) and total dry matter (1.5% and 13.1%) in maize and bean, respectively. With increasing width of strip, all of the measured traits decreased more in the central rows than the side rows. In both side rows and the central rows intercropping complementary effects was more on maize than bean in the measured traits. Average of maize and bean radiation use efficiency was from 1.65 & 0.98 in the sole cropping to 1.94 & 1.15 gMJ-1 in the strip of 2 rows, respectively.


Ahmad, F., Ahmad, I., Khan, M.S., 2006. Screening of free-living rhizospheric bacteria for their multiple plant
growth promoting activities. Microbial. Res. 36:1-9.
2- Bagyaraj, D.J., Menge, J.A., 1978. Interaction between a VA mycorrhiza and Azotobacter and their effects on
rhizosohere microflora and plant growth. New Phytol. 80: 567-573.
3- Baldani, V.L.D., Alvarez, M.A.B., 1987.Establishment inoculated Azospirillum Spp. in the rhizosphere and in roots
of field grown wheat and sorghum. Plant Soil. 90: 35-45.
4- Bashan, Y., Holguin, G., 1997. Azospirillum-plant relationships: environmental and physiological advances. Can. J.
Microbiol. 43: 103-121.
5- Bashan, Y., Holguin, G., de-Bashan, L., 2004. Azospirillum-plant relationships: physiological, molecular,
agricultural, and environmental advances. Can. J. Microbiol. 50: 521–577.
6- Bashan, Y., Harrison, S.K., Whitmoyer, R.E., 1990. Enhanced growth of wheat and soybean plants inoculated with
Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl. Environ. Microbiol.
56(3): 769-775.
7- Carlier, E., Rovera, M., Jaume, A. R., Rosas, S. B., 2008. Improvement of growth, under field conditions, of wheat
inoculated with Pseudomonas chlororaphis subsp. Aurantiaca. World. J. Microbiol. Biotech. 24(11): 2653-2658.
8- De Salomone, G., Dobereiner, J., 1996. Maize genotype effects on the response to Azospirillum inoculation. Biol.
Fertil. Soils. 21: 193-196.
9- Egamberdiyeva, D., 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in
two different soils. Appl. Soil. Eco. 36: 184-189.
10- Egamberdiyevaa, D., Hoflich. G., 2003. Influence of growth-promoting bacteria on the growth of wheat in different
soils and temperatures. Soil Biol. Biochem. 35: 973–978.
نقش تلقیح مضاعف باکتری های آزوسپریلوم و سودوموناس … 31
11- Ferreira, M.C.B., Fernandes, M.S., Dobereiner, J., 1987. Role of Azospirillum brasilense nitrate reductase in nitrate
assimilation by wheat plants. Biol. Fertil. Soils. 4: 47-53.
12- Fulchieri, M., Frioni,L., 1994. Azospirillum inoculation on maize (Zea mays): effect on yield in a field experiment
in central Argentina. Soil biol. biochem.26: 921-923.
13- Glick, B.R., Penrose, D., Wendo, M., 2001. Bacterial promotion of plant growth. Biotech. adv. 19:135-138.
14- Glick, B. R., Liu ,C., Ghosh, S., Dumbroff, E. B., 1997. Early development of canola seedlings in the presence of
the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol. Biochem. 29: 1233–1239.
15- Okon, Y., Heytler, P.G., Hardy, R.W.F., 1983. N2 fixation by Azospirillum brasilense and its incorporation into
host Setaria italica. Appl.Environ. Microbiol. 46: 694-697.
16- Piao, Z., Cui, Z., Yin, B., Hu, J., Zhou, C., Xie, G., Su, B., Yin, S., 2005. Changes in acetylene reduction activities
and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biol. Fertil. Soils.41: 371–378.
17- Rudresha, D.L., Shivaprakasha, M.K., Prasad, R.D., 2005. Effect of combined application of Rhizobium, phosphate
solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium
L.).Appl. Soil. Eco. 28:139–146.
18- Saatovich, S.Z., 2006. Azospirilli of Uzbekistan soils and their influence on growth and development of wheat
plants. Plant & Soil. 283:137-145.
19- Sharaan, A. N., El-Samie, F.S.A., 1999. Response of wheat varieties to some environmental influences. 1. Effect of
seeding rates and N fertilization levels on growth and yield of two wheat varieties (Triticum aestivum L.). Ann.
Agric. Sci. 44: 589–601.
20- Siddiqui,I. A., Shaukat, S. S., 2002. Mixtures of plant disease suppressive bacteria enhance biological control of
multiple tomato pathogens. Biol. Fertil. Soil. 36: 260–268.
21- Wue, S.C., Cao, Z.H., Li, Z.G., Cheung, K.C., Wong, M. H., 2005. Effects of biofertilizer containing N-fixer, P and
K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 125: 155–166.
22- Yasari, E., Patwardhan, A.M., 2007. Effects of Aztobacter and Azospirillium inoculations and chemical fertilizers
on growth and productivity of Canola. Asi. J. Plant. Sci. 6:77-82.
23- Zaied, K.A., Abd El-Hady, A.H., Sharief, A.E., Ashour, E.H., Nassef, M.A., 2007. Effect of Horizontal DNA
Transfer in Azospirillum and Azotobacter Strains on Biological and Biochemical Traits of Non-legume Plants. J.
Appl. Sci. Res. 3(1): 73-86.