مطالعه صفات ریخت‌شناسی، عملکرد و اجزای عملکرد دانه ارقام نخود (Cicer arietinum L.) تحت اثر تاریخ کشت‌ در شرایط دیم

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده کشاورزی، آب، غذا و فراسودمندها، واحد مهاباد، دانشگاه آزاد اسلامی، مهاباد، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شاهد، تهران، ایران

چکیده

نخود (Cicer arietinum L.) به‌عنوان یکی از مهم‌ترین حبوبات در نظام‌های زراعی مناطق نیمه‌خشک، از حساسیت بالایی نسبت به تاریخ کاشت و شرایط محیطی برخوردار است، ازاین‌رو شناخت واکنش ارقام مختلف نخود به تاریخ‌های متفاوت کاشت، نقشی کلیدی در افزایش پایداری عملکرد و بهره‌وری زراعی دارد. این مطالعه به‌منظور بررسی تأثیر تاریخ کاشت بر عملکرد و صفات زراعی ارقام مختلف نخود در شرایط آب‌و‌هوایی سرد و نیمه‌خشک شهرستان سقز در سال زراعی 1399-1398 انجام شد. آزمایش به‌صورت کرت‌های خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرا گردید. کرت اصلی پنج تاریخ کاشت (6 آذر، 11 اسفند، 5 فروردین، 29 فروردین و 22 اردیبهشت­ماه) و کرت فرعی ۱۰ رقم نخود منصور، آنا، عادل، پیروز، گوکسو، اسکان، آراس، آبگوشتی و رقم آجیلی (شاهد) بودند. نتایج نشان داد که تاریخ کاشت و نوع رقم به‌طور معنی‌داری بر سبز شدن مزرعه، صفات رشدی (ارتفاع بوته، تعداد شاخه فرعی و غلاف) و عملکرد دانه تأثیر گذاشتند. بیشترین درصد سبز شدن (82 درصد) در تاریخ 29 فروردین مشاهده شد، درحالی‌که کاشت‌های پاییزه (6 آذر) به‌خاطر تنش سرما و کاشت‌های دیرهنگام (22 اردیبهشت­ماه) به‌سبب کم‌آبی، کاهش سبز شدن را به همراه داشتند. تاریخ‌های زودهنگام‌تر (در صورت عدم تنش سرمایی) به‌دلیل طولانی‌تر بودن دوره رشد و استفاده بهینه از منابع، عملکرد بالاتری داشتند. بیشترین عملکرد دانه (659 کیلوگرم در هکتار) و شاخص برداشت (48 درصد) در کاشت 11 اسفند به دست آمد. تفاوت‌های ژنتیکی ارقام نیز در تحمل تنش‌های محیطی مشهود بود، به‌طوری‌که ارقام منصور و عادل در کاشت‌های زودهنگام عملکرد بهتری نشان دادند. این یافته‌ها اهمیت هماهنگی زمان کاشت با شرایط آب‌وهوایی و انتخاب ارقام مقاوم به تنش را در بهینه‌سازی تولید نخود در مناطق سرد و نیمه­خشک برجسته کرد. در تاریخ‌های مختلف کاشت، رقم وارداتی گوکسو و رقم محلی آبگوشتی بیشترین عملکرد از لحاظ تولید دانه را داشته‌اند. ترکیب دو عامل تاریخ ۱۱ اسفند و رقم گوکسو، بیشترین بازدهی را از لحاظ عملکرد دانه، وزن 100 دانه، و رشد مناسب نشان دادند و برای مناطقی با اقلیم مشابه، قابل توصیه هستند. مدیریت صحیح تاریخ کاشت و استفاده از ارقام سازگار به‌عنوان راهکاری کارآمد برای افزایش بهره‌وری در کشت نخود معرفی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Morphological Traits, Yield, and Yield Components of Chickpea (Cicer arietinum L.) Cultivars under Rainfed Conditions and Different Sowing Dates

نویسندگان [English]

  • Esmaeil Nabizadeh 1
  • Saman Yazdan Seta 1
  • Rahim Sarkhosh 1
  • Khadijeh Ahmadi 2
1 Institute of Agriculture, Water, Food, and Nutraceuticals, Mah.C., Islamic Azad University, Mahabad, Iran
2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
چکیده [English]

Introduction
Chickpea (Cicer arietinum L.), a cool-season legume, plays a vital role in sustainable agriculture and human nutrition due to its high protein content and nitrogen-fixing capacity. It contributes to crop rotation systems by suppressing weeds, reducing soil-borne diseases, and enhancing soil fertility. In regions with heavy-textured soils and high water-holding capacity, chickpea is typically sown in late autumn or early winter when soil moisture is adequate. Cultivated in over 56 countries, chickpea is often grown in semi-arid to arid environments, where abiotic stresses such as drought and cold limit its productivity. Its reproductive phase is especially sensitive to environmental stressors, making sowing date a crucial determinant of yield performance. Early sowing may extend the growth period and improve biomass accumulation, whereas late sowing can expose the crop to terminal drought. This study aimed to identify the optimal genotypes and planting dates for maximizing growth and yield under the cold and dry conditions of northwestern Iran.
 
Materials and Methods
The experiment was conducted during the 2019–2020 cropping season in Khusheh Darreh village, Saqqez County, Kurdistan Province, Iran (36°22′N, 46°34′E; 1502 m a.s.l.). A randomized complete block design (RCBD) with three replications was employed, evaluating five chickpea genotypes—including ‘Adel’ and ‘Mansour’—across five sowing dates: November 6, February 11, March 10, April 29, and May 22. Soil samples were collected at two depths (0–30 cm and 30–60 cm) for analysis of physical and chemical properties, and average climatic data were recorded. Morphological traits such as plant height, number of secondary branches, and number of pods, along with physiological indices including green emergence percentage, biological yield, seed yield, and harvest index, were measured.
 
 
Results and Discussion
Sowing date and genotype significantly affected all measured traits. The highest green emergence (82%) was recorded for the April 29 sowing date, whereas sowing in early December resulted in lower emergence due to cold stress. Late May sowing led to poor establishment caused by water stress. The February 11 sowing date produced the highest grain yield (652 kg/ha) and harvest index (48%), attributed to an optimal combination of growing season duration and favourable environmental conditions. Genotypic differences were evident, with ‘Adel’ and ‘Mansour’ performing best under early sowing conditions, reflecting their superior tolerance to cold and extended vegetative growth. Late sowing restricted plant development and yield due to a shortened growth period and terminal drought. Early sowing (in the absence of frost damage) allowed for prolonged growth, improved utilization of light and moisture, and more effective resource allocation, enhancing both vegetative and reproductive traits. Pod number and seed number were identified as key determinants of yield, consistent with previous findings. Environmental stress during the flowering and pod development stages resulted in an increased number of empty pods and reduced seed weight, highlighting the importance of aligning crop phenology with climatic conditions. The study also confirmed that Desi-type chickpeas exhibit greater resilience to abiotic stresses compared to Kabuli types. Tailoring sowing dates to genotype-specific growth patterns and climatic forecasts is essential for sustainable chickpea production in cold and water-limited regions.
 
Conclusion
This research emphasizes the critical role of sowing date in optimizing chickpea performance under cold, dry agro-climatic conditions. Among the treatments, sowing on February 11 combined with genotypes such as ‘Adel’ and ‘Mansour’ resulted in superior growth and yield. The findings highlight the importance of location-specific agronomic planning that integrates genotype selection with optimal sowing time. These results offer practical recommendations for enhancing chickpea productivity in highland areas prone to cold and drought stress. Future research should investigate the physiological mechanisms behind genotype responses and explore integrated crop management strategies for further yield stabilization.
 
Acknowledgements
The authors thank the Agricultural Research Station of Kurdistan Province for providing the research site and technical support. Special appreciation is extended to the local farmers of Saqqez for their cooperation and logistical assistance during the fieldwork.
 

کلیدواژه‌ها [English]

  • Agronomic Traits
  • Chickpea
  • Emergence Percentage
  • Harvest Index
  • Plant height

Authors retain the copyright.This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Aghaeifard, K., Tobeh, A., Farzaneh, S., Karbalaei Khiavi, H., & Sharifiziveh, P. (2025). The effect of sowing dates and different densities of cover crops on weed control and soybean (Glycine max) yield. Journal of Agricultural Science and Sustainable Production. 35(2), 63-84. (In Persian with English abstract). https://doi.org/10.22034/saps.2024.58295.3108
  2. Berger, J.D., Turner, N.C., Siddique, K.H.M., Knights, E.J., Brinsmead, R.B., Mock, I., Edmondson, C., & Khan, T.N. (2004). Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum) improvement. Australian Journal of Agricultural Research, 55, 1071–1084. https://doi.org/10.1071/AR04104
  3. Devasirvatham, V., Gaur, P.M., Mallikarjuna, N., Raju, T.N., Trethowan, R.M., & Tan, D.K.Y. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9–19. https://doi.org/10.1016/j.fcr.2012.11.011
  4. Devasirvatham, V., Gaur, P.M., Raju, T.N., Trethowan, R.M., & Tan, D.K.Y. (2015). Field response of chickpea (Cicer arietinum) to high temperature. Field Crops Research, 172, 59–71. https://doi.org/10.1016/j.fcr.2014.11.017
  5. Fallah, S. (2008). Effect of planting date and plant density on yield and yield components in chickpea genotypes (Cicer arietinum) in dry condition of Khorram Abad. Journal of Agricultural Science and Technology, 45, 123–135. (In Persian with English abstract). http://jcpp.iut.ac.ir/article-1-905-fa.html
  6. FAOSTAT. (2020). Food and Agriculture Organization of the United Nations. https://faostat.fao.org/faostat/ (accessed on 14 November 2021)
  7. Fordoński, G., Okorski, A., Olszewski, J., Dąbrowska, J., & Pszczółkowska, A. (2023). The effect of sowing date on the growth and yield of soybeans cultivated in North-Eastern Poland. Agriculture, 13(12), 2199. https://doi.org/10.3390/agriculture13122199
  8. Gaur, P.M., Jukanti, A.K., & Varshney, R.K. (2012). Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2, 199–221. https://doi.org/10.3390/agronomy2030199
  9. Gaur, P.M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S.B., Jayalakshmi, V., Mannur, D.M., Vijayakumar, A.G., Ganga Rao, N.V.P.R., & Ojiewo, C. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum). Plant Breeding, 138, 389–400. https://doi.org/10.1111/pbr.1264
  10. Ghalkhani, A., Paknejad, F., Mahrokh, A., Ardakani, M.R., & Golzardi, F. (2022). Effects of planting method and sowing date on yield, water use efficiency and morphological traits of two grain maize cultivars. Journal of Agricultural Science and Sustainable Production, 32(1), 1–16. https://doi.org/10.22034/saps.2021.44751.2644
  11. Grasso, N., Lynch, N.L., Arendt, E.K., & O’Mahony, J.A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21, 435–452. https://doi.org/10.1111/1541-4337.12878
  12. International Seed Testing Association (ISTA). (2006). International rules for seed testing. Basserdorf, Switzerland: ISTA.
  13. Khojamli, A., Nakhzari Moghaddam, A., Mollashahi, M., & Ahangar, L. (2020). Investigation of some quantitative and qualitative characteristics of chickpea (Cicer arietinum) Adel cv. under the influence of nitrogen and supplemental irrigation. Iranian Journal of Pulses Research, 10(2), 193–203. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v10i2.70012
  14. Lack, L., & Sadras, V.O. (2014). The critical period for yield determination in chickpea (Cicer arietinum). Field Crop Research, 168, 1–7. https://doi.org/10.1016/j.fcr.2014.08.003
  15. Liaqat, W., Akmal, M., & Ali, J. (2018). Sowing date effect on production of high yielding maize varieties. Sarhad Journal of Agriculture, 34(1), 102–113. https://doi.org/10.17582/journal.sja/2018/34.1.102.113
  16. Mafoua, L., Richards, M.F., Norton, S.L., & Nguyen, G.N. (2020). Breeding for abiotic stress adaptation in chickpea (Cicer arietinum): A comprehensive review. Crop Breeding, Genetics and Genomics, 2, e200015. https://doi.org/10.20900/cbgg20200015
  17. Mousavi, S.K., & Pezeshkpour, P. (2006). Effects of planting pattern on pea (Pissum sativum) production in dryland situation of Lorestan province. Iranian Journal of Field Crops Research, 4(2), 375-384. (In Persian with English abstract). https://doi.org/10.22067/gsc.v4i2.1275
  18. Naseri, R., Siyadat, A., Soleymani Fard, A., Soleymani, R., & Khosh Khabar, H. (2012). Effects of planting date and density on yield, yield components and protein content of three chickpea (Cicer arietinum) cultivars under rainfed conditions in Ilam province. Iranian Journal of Pulses Research, 2(2), 7-18. (In Persian with English abstract). https://doi.org/10.22067/ijpr.v2i2.19018
  19. Pokhrel, A., Dangi, S.R., & Poudel, P.P. (2025). Impact of sowing date and variety on the performance of chickpea in the Western-Terai region of Nepal. Asian Journal of Research in Crop Science, 10(1), 28–36. https://doi.org/10.9734/ajrcs/2025/v10i1329
  20. Potopová, V., Trifan, T., Trnka, M., De Michele, C., Semerádová, D., Fischer, M., Meitner, J., Musiolková, M., Muntean, N., & Clothier, B. (2023). Copulas modelling of maize yield losses – Drought compound events using the multiple remote sensing indices over the Danube River Basin. Agricultural Water Management, 280, 108217. https://doi.org/10.1016/j.agwat.2023.108217.
  21. Pushpavalli, R., Berger, J.D., Turner, N.C., Siddique, K.H.M., Colmer, T.D., & Vadez, V. (2020). Cross-tolerance for drought, heat and salinity stresses in chickpea (Cicer arietinum). Journal of Agronomy and Crop Science, 206, 405–419. https://doi.org/10.1111/jac.12393
  22. Rasheed, A., Gill, R.A., Hassan, M.U., Mahmood, A., Qari, S., Zaman, Q.U., Ilyas, M., Aamer, M., Batool, M., & Li, H. (2021). Recent advancements in the use of CRISPR/Cas9 technology to enhance crops and alleviate global food crises. Current Issues in Molecular Biology, 43, 1950–1976. https://doi.org/10.3390/cimb43030135
  23. Richards, M.F., Maphosa, L., & Preston, A.L. (2022). Impact of sowing time on chickpea (Cicer arietinum) biomass accumulation and yield. Agronomy, 12, 160. https://doi.org/10.3390/agronomy12010160
  24. Sadras, V.O., & Slafer, G.A. (2012). Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Research, 127, 215–224. https://doi.org/10.1016/j.fcr.2011.11.014
  25. Sadras, V., & Dreccer, M.F. (2015). Adaptation of wheat, barley, canola, field pea and chickpea to the thermal environments of Australia. Crop and Pasture Science, 66, 1137–1150. https://doi.org/10.1071/CP15129
  26. Sandeep, G.S., Chil, U., & Viswanadhuni, U.K. (2023). Effect of dates of sowing on growth and yield of chickpea varieties. International Journal of Environment and Climate Change, 13(10), 834–838. https://doi.org/10.9734/ijecc/2023/v13i102723
  27. Serafin-Andrzejewska, M., Helios, W., Białkowska, M., Kotecki, A., & Kozak, M. (2024). Sowing date as a factor affecting soybean yield—A case study in Poland. Agriculture, 14, 970. https://doi.org/10.3390/agriculture14070970
  28. Seyedi, S.M., & Hamzei, J. (2021). Study effect of sowing dates on quantitative and qualitative yield of chickpea cultivars under dryland condition. Journal of Plant Production Research, 28(4), 65–83. (In Persian with English Abstract). https://doi.org/10.22069/jopp.2020.17459.2608
  29. Szczerba, A., Płażek, A., Pastuszak, J., Kopeć, P., Hornyák, M., & Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max) cultivars. Agronomy, 11(4), 800. https://doi.org/10.3390/agronomy11040800.
  30. Wood, J.A., Knights, E.J., Harden, S., & Hobson, K.B. (2019). Seed quality and the effect of introducing Cicer echinospermum to improve disease and pest resistance in desi chickpea. Legume Science, 1, e22. https://doi.org/10.1002/leg3.22

 

CAPTCHA Image