ارزیابی مدل SSM-wheatدر شبیه‎سازی رشد و نمو ارقام گندم(Triticum aestivum L.) در تراکم‌های مختلف کاشت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران

2 بخش زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، گرگان، ایران

چکیده

گندم (Triticum aestivum L.) یکی از مهم‌ترین و پرمصرف‌ترین گیاهان زراعی شناخته‌شده در جهان می‌باشد. یکی از شاخه‌های علم زراعت و فیزیولوژی گیاهان زراعی مدل‌سازی گیاهان زراعی است. در مدل SSM شبیه‌سازی ساده‌ای برای تخمین عملکرد و مراحل فنولوژیک محصولات مختلف به‌کار رفته است. هدف از این آزمایش ارزیابی مدلSSM-Wheat در شرایط تراکم‌های متفاوت و تنش خشکی انتهای فصل رشد است. این آزمایش در سال زراعی 1401-1400 در ایستگاه تحقیقات کشاورزی گنبدکاووس به اجرا در آمد. آزمایش فاکتوریل عوامل آزمایش شامل تراکم بوته در 6 سطح (شامل 200، 250، 300، 350، 400 و 450 بذر در متر مربع) و ژنوتیپ در 6 سطح (شامل N-93-9، تکتاز، آراز، آرمان، کلاته و تیرگان) بودند. در این تحقیق برای شبیه‌سازی رشد و نمو گندم نان از مدل SSM-wheat استفاده شد. نتایج مدل با استفاده از آماره‌های مبتنی بر اختلاف مقادیر شبیه‌سازی و مشاهده‌شده شامل ضریب تبیین (R2)، جذر میانگین مربعات خطا (RMSE)، جذر میانگین مربعات خطای نرمال شده (nRMSE) و خط یک به یک نشان داد که مدل توانست از میان مراحل فنولوژیک اصلی و عملکرد را با دقت قابل قبولی برآورد کند. در حالی که روز تا پنجه‌زنی و روز تا ساقه رفتن با دقت کمتری برآورد شد. به طور کلی، مطالعه حاضر تأیید کرد که SSM -Wheat یک مدل ساده، قوی و شفاف است که برای کاربردهای زراعی با هدف بهبود تصمیم‌گیری فنی در مدیریت محصولات زراعی مناسب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of SSM-Wheat Model in Simulating the Growth and Development of Wheat (Triticum aestivum L.) Cultivars in Different Planting Densities

نویسندگان [English]

  • Ali Rahemi karizki 1
  • Faramarz Sayyedi 2
  • Habib allah Soghi 2
  • Arazqlych Marfy 1
  • Mojtaba Salehi SHaikhi 1
  • Saeed Bagherikia 2
1 Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
2 Agricultural and Horticultural Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
چکیده [English]

Introduction
Wheat (Triticum aestivum L.) is one of the most important and widely consumed crops in the world. Changing the density towards an optimal density can alter the ratio of soil evaporation to plant transpiration in such a way that water use efficiency improves. One of the branches of crop science and crop physiology is crop modeling. Quantifying the growth and development of a crop in response to environmental conditions in a system is called modeling, which helps the user make better decisions about crop management. One of the simple models of crops is the SSM model, which provides a simple simulation for estimating yield and phenological stages of various crops. Models have the ability to be used with physiological and ecological analysis based on research and empirical observations. The aim of this experiment is to evaluate the SSM-Wheat model under different density conditions and late-season drought stress.
 
Materials and Methods
This experiment was conducted in the cropping year 2021-2022 at the Gorgan Agricultural Research Station. The factorial experiment included factors such as plant density at six levels (200, 250, 300, 350, 400, and 450 seeds per square meter) and genotype at six levels (N-93-9, Taktaz, Araz, Arman, Kalateh, and Tirgan). In this study, the SSM-Wheat model was used to simulate the growth and development of bread wheat. The meteorological data file, including precipitation, total sunshine hours, average relative humidity, average temperature, and average maximum temperature, was collected daily and defined in the model. The parameters related to soil characteristics were considered from the base data of the model. To evaluate the model, the coefficient of determination (R2), root mean square error (RMSE), normalized root mean square error (nRMSE), and the 1:1 line were used.
 
 
Results and Discussion
The results of the model, using statistics based on the differences between simulated and observed values, including the coefficient of determination, root mean square error, normalized root mean square error, and the 1:1 line, showed that the model was able to accurately estimate the main phenological stages of days to emergence, days to flowering, and days to physiological maturity. The highest coefficient of determination was obtained for days to emergence, days to physiological maturity, and days to flowering, at 0.97, 0.77, and 0.71, respectively. The root mean square error (RMSE) for these traits was 2.8, 4.9, and 8.8, respectively. However, the traits "days to tillering" and "days to stem elongation" were estimated with lower accuracy, with a coefficient of determination and RMSE of 0.44 and 15.2 for days to tillering, and 0.17 and 6.8 for days to stem elongation, respectively. The results suggest that with an increase in maximum, minimum, and average temperature, and annual precipitation, the number of days required to reach each phenological stage decreases, which is logical. The maximum and minimum model-predicted values for grain yield were 410.4 and 547.6 grams per square meter, respectively, with a mean of 467.8 grams per square meter. The coefficient of determination and root mean square error for grain yield were 0.63 and 35.3, respectively. The distribution of simulated and observed points for the main phenological stages of days to emergence, days to flowering, and days to physiological maturity, as well as grain yield, fell within the 1:1 line range, indicating the model's high accuracy in predicting yield.
 
Conclusion
In general, the  results showed that the SSM-Wheat model was useful in simulating the main stages of wheat phenology and its performance under different conditions in different cultivars. The evaluation of the model using statistical indices of the coefficient of determination and root mean square error also confirmed the model's strength. Overall, the present study confirmed that SSM-Wheat is a simple, robust, and transparent model suitable for agricultural applications aimed at improving technical decision-making in crop management. In general, according to the results obtained for the SSM-Wheat model, it can be used for correct management in terms of the density and suitable cultivars of wheat cultivation in the field and its performance analysis in Gonbad Kavus weather conditions.
 







 




 

کلیدواژه‌ها [English]

  • Grain yield
  • Normalized root mean square error
  • Phonological Stage
  • Root mean square error
 

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

  1. Ahmed, M., Akram, M.N. Asim, M. Aslam, M. Hassan, F. Higgins, S. Stockle, O., & Hoogenboom, C.G. (2016). Calibration and validation of APSIM -Wheat and CERES -Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 384-401. https://doi.org/10.1016/j.compag.2016.03.015
  2. Asseng, S., Zhu, Y., Wcang, E., & Zhang, W. (2015). Crop modeling for climate change impact and adaptation. In Asseng,Y. Zhu, E. Wang, and W. Zhang (Eds.). Crop Physiology. USA. p. 505-546 https://doi.org/10.1016/B978-0-12-417104-6.00020-0
  3. Azadi, H., Akbar, G.A., & Akbari, G.A. (2018). Parameterization of SSM Model to analyze wheat growth and yield potential under Pakdasht conditions. Biomedical and Pharmacology Journal, 11(4), 1913-1926. http://dx. org/10.13005/bpj/1564
  4. Bastos, L.M., Carciochi, W., Lollato, R.P., Jaenisch, B.R., Rezende, C.R., Schwalbert, R., & Ciampitti, I.A. (2020). Winter wheat yield response to plant density as a function of yield environment and tillering potential: A review and field studies. Frontiers in Plant Science, 11, 54. https://doi.org/10.3389/fpls.2020.00054
  5. Baygi, Z., Safizadeh, S., Shirani Rad, A.M., Valadabadi S.A., & A. (2016). Seed yield and yield component of some spring wheat varieties as affected by different sowing dates in Neishabour. Journal of Crop Ecophysiology, 11(4), 905-922. (in Persian with English abstract). https://doi.org/10.22092/AJ.2018.109088.1113
  6. Delghandi, M., Anderzian, B., Broumand Nesab, S., Masah Boani, A., & Javaheri, A. (2014). Evaluation of the CERES-Wheat model, DSSAT 4.5 version, in simulating the growth, yield and phenology stages of wheat under the conditions of different management of water allocation in the field (case study: Ahvaz city). Water and soil magazine, 28(1), 91-82. https://doi.org/10.22067/jsw.v0i0.20658
  7. Farahani, H.J., Izzi, G., & Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy journal, 101(3), 469-476. https://doi.org/10.2134/agronj2008.0182s
  8. Fischer, R. A., Moreno Ramos, O. H., Ortiz Monasterio, I., & Sayre, K. D. (2019). Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Research, 232, 95–105. https://doi.org/10.1016/j.fcr. 2018.12.011
  9. Food and Agriculture Organization of the United Nations, FAOSTAT database Food and Agriculture Organization of the United Nations, FAOSTAT database (FAOSTAT, 2021), [cited 28 March, 2023], Available from: http://www.fao.org/faostat/en/#data/QC/ Forest Meteorology, 250, 243–261. http://faostat. FAO. Org., 2018 . https://doi.org/10.32614/cran.package.faostat
  10. Geoffrey, E.O., Wietse, H.P., Iwan, S., Omondi, P., & Ronald, W.A. (2018). Probabilistic maize yield prediction over East Africa using dynamic ensemble seasonal climate forecasts. Agricultural and Forest Meteorology, 250, 243-261. https://doi.org/10.1016/j.agrformet.2017.12.256
  11. Ghanem, M. E., Marrou, H., & Sinclair, T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3), 139-144. https://doi.org/10.1016/j.tplants.2014.11.006
  12. Ghasemimoham, S., Tarabi, B., & Dadarsi, A. 2017. Modeling growth and yield of autumn wheat in Hamadan province. Journal of Plant Ecophysiology, 33(10), 199-186. https://www.researchgate.net/publication/321709810
  13. Guilpart, N., P. Grassini, V. Sadras, O. Timisina, J., & Cassman, K. G. (2017). Estimating yield gaps at the cropping system level. Field Crops Research, 206, 21-32. https://doi.org/10.1016/j.fcr.2017.02.008
  14. Hajarpour, A., Soltani, A., Zainli, A., & Sayyedi. F. (2013). Simulating the effect of climate change on chickpea production in dry and wet conditions in Kermanshah. Plant Production Research (Agricultural Sciences and Natural Resources), 20(2), 252-235.
  15. Hiltbrunner, J., Streit, B. & Lidgens, M. (2007). Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crop Research, 102, 163- 171. https://doi.org/10.1016/j.fcr.2007.03.009
  16. Holzworth, D. P., Huth, N. I., & deVoil, P. G. (2011). Simple software processes and tests improve the reliability and usefulness of a model. Environmental Modelling and Software, 26(4), 510-516. https://doi.org/10.1016/j.envsoft.2010.10.014
  17. Kheiri, M., & Kambouzia, J. (2022). Evaluating the efficiency of APSIM-Wheat model in simulating the phenology and grain yield of bread wheat (Triticum aestivum) in the western and northwestern drylands of Iran. Journal of Agricultural Sciences of Iran, 24(2), 118-135. (in Persian with English abstract). http://agrobreedjournal.ir/article-1-1230-en.html
  18. Khaliliaqdam, N., Rahemi Karizaki, A., & Mir Mahmoodi, T. (2017). Simulation of wheat production under different planting patterns (adaptation remedy). Journal of Applied Researches of Plant Ecophysiology, 3(2), 1-10. (in Persian). http://arpe.gonbad.ac.ir/article-1-215-fa.html
  19. Manschadi, A. M., Palka, M., Fuchs, W., Neubauer, T., Eitzinger, J., Oberforster, M., & Soltani, A. (2022). Performance of the SSM-iCrop model for predicting growth and nitrogen dynamics in winter wheat. European Journal of Agronomy, 135, 126487.‏ https://doi.org/10.1016/j.eja.2022.126487
  20. Mohammadi, S., Rahmi Kariziki, A.; & Nakhzari Moghadam, A. (2023). Evaluation of SSM-wheat model to simulate barley growth and yield. Journal of Applied Researches of Plant Ecophysiology, 7(13), 133-123. (in Persian). http://arpe.gonbad.ac.ir/article-1-408-fa.html
  21. Moeinirad, A., Zeinali, E., Soltani, A., Galeshi, S., & Yeganeh Poor, F. (2017). Investigation of SSM-Wheat model to forecast of growth and yield of wheat in response to fertilizer nitrogen in order to decrease pollution environmental and diseases. International Journal of Advanced Biological and Biomedical Research, 5(2), 73-78.‏ https://doi.org/18869/IJABBR
  22. Mokari, M., Abedinpour, M., & Dehghan, H. (2020). The effect of drought stress and sowing date on grain yield and water use efficiency in autumn wheat in Kashmar region. Journal of Water Research in Agriculture, 34(2), 167-189. (in Persian with English abstract). https://doi.org/10.22092/jwra.2020.122256
  23. Nehbandani, A.R., Soltani, A., Zeinali, E., Raeisi, S., & Rajabi, R. (2016). Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. 2014. Journal of Plant Production, 22(3): 1-26. (in Persian with English abstract) https://doi.org/1001.1.23222050.1394.22.3.1.2
  24. Panahi, M.H., Soltani, A. , Zeinali, E., Kalateh Arabi, M., & Nehbandani, A. R. (2020). Estimation of phenological parameters in SSM-Wheat model for bread wheat (Triticum aestivum) genotypes in Golestan province of Iran. Iranian Journal of Crop Sciences, 21(4): 302-314. (in Persian). https://doi.org/10.29252/abj.21.4.302
  25. Pourghasemian, N., Moradi, R., & Naghizadeh, M. (2018). Effect of planting time and place on quality of some brompt on stock varieties for cultivation in Bardsir, Kerman. Crops Improvement, 20, 679-692. (in Persian with English abstract) https://doi.org/10.22059/jci.2018.246733.1879
  26. Rahemi Karizaki, A., & Nouralizadeh Otaghsara, M. (2020). Simulation of soybean growth and yield using SSM-iLegume_Soybean model in Mazandaran. Plant Ecophysiology, 12(40), 166-177. (in Persian with English abstract). https://dorl.net/dor/1001.1.20085958.1399.12.40.14.9
  27. Rahemi Karizki, A., & Hosseini, S.H. (2020). Modeling of phenological stages and yield parameters of faba bean in the east of Golestan province conditions. Iranian Journal Pulses Research, 11(1), 38-48. (in Persian with English abstract). https://doi.org/22067/IJPR.V11I1.69427
  28. Rahemi Karizaki, A., Kouhkan, H., Feyzbakhsh, M.T., & Khaliliaqdam, N. )2023(. Simulation of phenological stages and length of growth period of grain sorghum (Sorghum bicolor) using SSM-iSorghum model (Case study: Gorgan city). Journal of Agroecology, 14(4), 729-713. (in Persian with English abstract). https://agry.um.ac.ir/
  29. Rehban, S., Torabi, B., Soltani, A., & Zainli. A. )2021(. Using the SSM-iCrop model to predict the phenology, yield and water productivity of rapeseed (Brassica napis) in Iran. Journal of Agroecology, 13(1), 157-177. (in Persian with English abstract). https://doi.org/10.22067/JAG.V13I2.84057
  30. Sassendran, S.A., Nielsen, D.C Ahuja, L.R.; & Halvorson, A.D. (2004). Modeling nitrogen management on winter wheat production using RZWQM and CERES-Wheat. Agronomy, 96, 615-630. https://doi.org/10.2134/agronj2004.0615
  31. Shiukhy Soqanloo, S., Mousavi Baygi, M., Torabi, B., Raeini Sarjaz, M. (2023). Evaluating the SSM model efficiency in simulating the wheat growth under water stress conditions. Journal of Water and Soil, 37(3), 353-366. (in Persian with English abstract). https://doi.org/10.22067/jsw.2023.80355.1237
  32. Shiukhy-Soqanloo, S., Mousavi-Baygi, M., Torabi, B., & Raeini-Sarjaz, M. (2021). Evaluation of climate change effects on irrigated wheat CV. Mehregan yield under drought stress condition (Case study: Varamin). Journal of Agricultural Meteorology, 9(2), 15-28. (in Persian with English abstract). https://doi.org/22125/AGMJ.2021.297373.1121
  33. Smethurst, P.J., Huth, N.I., Masikati, P., Sileshi, G.W., Akinnifesi, F. K., Wilson, J., & Sinclair, F. (2017). Accurate crop yield predictions from modeling tree-crop interactions in Gliricidia-maize agroforestry. Agricultural Systems, 155, 70-77. https://doi.org/10.1016/j.agsy.2017.04.008
  34. Soltani, A., Maddah, V., & Sinclair, T. R. (2013). SSM-Wheat: A simulation model for wheat development, growth and yield. International Journal of Plant Production, 7(4), 711-740.‏ https://doi.org/22069/IJPP.2013.1266
  35. Turkman, M., Nasiri Mahalati, M., & Koocheki, A. )2022(. Calibration and validation of WOFOST model for predicting phenology and yield of potato (Solanum tuberosum) in Iran. Journal of Agroecology, 4(4), 615-601. (in Persian with English abstract). https://doi.org/10.22067/JAG.V1I1.47502
  36. Zhang, Y., L. Feng, E. Wang, J.; & Li, B. (2012). Evaluation of the APSIM -Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 92, 937-949. https://doi.org/10.4141/cjps2011-266
  37. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research14(6), 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
CAPTCHA Image