اثر سطوح مختلف ورمی‌کمپوست و کود شیمیایی بر برخی صفات کمّی و کیفی سه رقم ذرت (Zea mays L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 سازمان جهاد کشاورزی استان کردستان، سنندج، ایران

چکیده

به‌منظور بررسی اثر مقادیر کودهای ورمی‌کمپوست و شیمیایی بر برخی صفات کمّی و کیفی سه رقم ذرت، آزمایشی به‌صورت کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال 1401در ایستگاه تحقیقات کشاورزی گریزه سنندج اجرا شد. پنج سطح مختلف کود شامل شاهد (عدم مصرف کود)، 5 تن ورمی‌کمپوست در هکتار، 75/3 تن ورمی‌کمپوست در هکتار + 25 درصد کود شیمیایی توصیه‌شده، 5/2 تن ورمی‌کمپوست در هکتار + 50 درصد کود شیمیایی توصیه‌شده، و 100 درصد کود شیمیایی توصیه‌شده (150 کیلوگرم اوره در هکتار + 200 کیلوگرم سوپرفسفات در هکتار + 50 کیلوگرم سولفات پتاسیم در هکتار) به کرت‌های اصلی و سه رقم ذرت شامل SC 704، ZP 600 و والبوم به کرت‌های فرعی اختصاص یافتند. بیشترین مقادیر نیتروژن، فسفر، روغن، نشاسته و عملکرد دانه در تیمار 5/2 تن ورمی‌کمپوست در هکتار + 50 درصد کود شیمیایی توصیه‌شده مشاهده گردید. در بین ارقام مورد مطالعه، از نظر عملکرد دانه و علوفه تفاوت معنی‌داری مشاهده نشد، ولی میزان روغن و نشاسته دانه در رقم SC 704 بیشتر از سایر ارقام بود. بیشترین درصد و عملکرد پروتئین علوفه سیلویی در تیمار 100 درصد کود شیمیایی توصیه‌شده به‌دست آمد. علاوه‌براین، بالاترین درصد خاکستر علوفه سیلویی و الیاف نامحلول در شوینده خنثی در تیمار 5/2 تن ورمی‌کمپوست در هکتار + 50 درصد کود شیمیایی توصیه‌شده حاصل گردید. نتایج آزمایش نشان داد که تیمار 5/2 تن ورمی‌کمپوست در هکتار + 50 درصد کود شیمیایی توصیه‌شده از لحاظ اکثر صفات مرتبط با کیفیت و عملکرد دانه و علوفه نسبت به سایر تیمارهای کودی برتری داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Different Levels of Vermicompost and Chemical Fertilizer on some Quantitative and Qualitative Traits of Three Maize (Zea mays L.) Cultivars

نویسندگان [English]

  • Mohammad Akbari 1
  • Gholamreza Heidari 1
  • Shiva Khalesro 1
  • Mohammad Majidi 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandajm, Iran
2 Agricultural Jihad Organization of Kurdistan Province, Sanandaj, Iran
چکیده [English]

Introduction
Maize is a primary source of food for humans, livestock and industrial purposes. Silage maize is a crucial feed crop on livestock farms worldwide, primarily used to enhance livestock productivity and performance. The high utilization of maize for silage is attributed to its substantial green fodder mass production, high energy content in dry matter, quality biomass, low buffering capacity, and high soluble carbohydrate levels. However, improper use of chemical fertilizers in maize cultivation has led to soil and environment pollution and soil quality degradation. Continuous use of these fertilizers can result in soil toxicity and deficiencies in essential macro and micronutrients. Sustainable agriculture aims to reduce chemical fertilizer usage and enhance soil nutrient cycling by substituting chemical inputs with organic fertilizers, thereby increasing yield per unit area and improving agricultural product quality. Vermicompost, an organic fertilizer, enhances elements absorption by crops by increasing root cell membrane permeability, stimulating root growth, and promoting root hair proliferation. This experiment aimed to investigate the response of maize cultivars to different levels of vermicompost and chemical fertilizers to optimize crop nutrition management and reduce chemical fertilizers consumption, supporting sustainable agriculture.
 
Materials and Methods
This research was conducted at the Grizeh Agricultural Jihad Organization farm in Kurdistan Province during the 2022 cropping season. The experiment was designed as a split-plot based on a randomized complete block design with three replications. The main factor included different fertilizer levels: Control (no fertilizer), vermicompost at 5 ton.ha-1, vermicompost at 3.75 ton.ha-1 + 25% recommended chemical fertilizer, vermicompost at 2.5 ton.ha-1 + 50% recommended chemical fertilizer, and 100% recommended chemical fertilizer (150 kg.ha-1 of urea + 200 kg.ha-1 of superphosphate + 50 kg.ha-1 of potassium sulfate). The subfactor included three maize cultivars: SC 704 (120 days, mid-ripe), ZP 600 (110-120 days, mid-ripe) and Album (90-95 days, early). Data were analyzed using SAS 9.1 software, and mean comparisons were made using the LSD test. Graphs were created using Excel software.
 
Results and Discussion
Results showed that the highest contents of grain nitrogen, phosphorus, oil and starch were observed in the treatment of 2.5 tons of vermicompost per hectare + 50% of the recommended chemical fertilizer. The highest grain yield (8.85 ton.ha-1) and dry forage yield (20.24 ton.ha-1) were also observed in this treatment. The highest amount of silage fodder protein content was obtained from the treatment of 100% recommended chemical fertilizer. The highest forage protein yield was observed in the treatment with 100% of the recommended chemical fertilizer which did not show a significant difference compared to the treatment with a combined application of 2.5 tons of vermicompost per hectare + 50% of the recommended chemical fertilizer. Additionally, the highest percentage of silage fodder ash and neutral detergent fibers were found in the treatment of 2.5 tons of vermicompost per hectare + 50% of the recommended chemical fertilizer. No significant difference was observed between the studied cultivars in terms of grain and forage yield; however, the grain oil and starch content in the SC 704 cultivar was higher than in the other cultivars studied. Among the reasons for the increase in grain and forage yield in the integrated treatments of chemical fertilizer and vermicompost, we can mention the greater compatibility between available soil nitrogen and plant needs in integrated levels. So that at the beginning of growth, when the nutritional requirement is low, the amount of inorganic nitrogen in organic fertilizers is lower than that of chemical fertilizers, but in the stages of reproductive growth, due to the continuation of the mineralization process, absorption continues for a longer period of time.
 
Conclusion
The combined fertilizer treatment of 2.5 tons of vermicompost per hectare + 50% of the recommended chemical fertilizer was superior to other fertilizer treatments concerning most traits related to the quality and yield of maize grain and forage. In general, the use of organic manures such as vermicompost, while significantly reducing the consumption of chemical fertilizers, can reduce the harmful environmental effects caused by their use.



 
 



 

کلیدواژه‌ها [English]

  • Crude protein
  • Grain starch
  • Neutral insoluble fibers
  • Organic matter
 

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

 

  1. Abera, T., Tufa, T., Tola, B., & Kumbi, H. (2019). Effects of vermicompost and NPS fertilizer rate on yield and yield components of highland maize in vertisol ambo. Ethiopian Journal of Applied Science and Technology, 10(1), 1–15.

    1. Ahmed, A.U.H., Qadir, I., & Mahmood, N. (2007). Effect of integrated use of organic and inorganic fertilizers on fodder yield of sorghum (Sorghum bicolar L.). Pakistan Journal of Agricultural Science, 44, 415-421.
    2. Akintoye, H.A., Lucas, E.O., & Kling, J.G. (2008). Effects of density of planting and time of nitrogen application on maize varieties in different ecological zones of West Africa. Communications in Soil Science and Plant Analysis, 28, 1163-1175. https://doi.org/10.1080/00103629709369863
    3. Anonymous. (2022). Agricultural statistics: Crops, farming year of 2021-2022 (Vol. 1). Tehran: Ministry of Agriculture – Jahad, Iran.
    4. AOAC. (1999). Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed. AOAC International, Gaithersburg, MD, USA. https://doi.org/10.1093/9780197610145.003.1380
    5. Arancon, N.Q., Edwards, C.A., Bierman, P., Metzger, J.D., & Lucht, C. (2005). Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiolgia, 49, 297–306. https://doi.org/10.1016/j.pedobi.2005.02.001
    6. Arya, R.L., Varshney, J.G., & Kumar, L. (2007). Effect of integrated nutrient application in chickpea + mustard intercropping system in the semi‐ arid tropics of North India. Journal of Communications in Soil Science and Plant Analysis, 38, 229-240. https://doi.org/10.1080/00103620601094189
    7. Ayub, M., Nadeem, M.A., Sharar, M.S., & Mahmood, N. (2002). Response of maize (Zea mays L.) fodder to different levels of nitrogen and phosphorus. Asian Journal of Plant Sciences, 1, 352-354. https://doi.org/10.3923/ajps.2002.352.354
    8. Baghdadi, A., Balazadeh, M., Kashani, A., & Golzardi, F. (2017). Effects of pre-sowing treatments and nitrogen rates on quantitative and qualitative characteristics of silage maize SC 704. Crop Production, 9, 103-120. (In Persian). https://doi.org/10.22069/ejcp.2017.10508.1823
    9. Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, 39(34), 1-15. https://doi.org/10.1007/s13593-019-0579-x
    10. Cheema, M.A., Farhad, W., Saleem, M.F., Khan, H.Z., Vahid, M.A., Rasul, F., & Hammad, H.M. (2010). Nitrogen management strategies for sustainable maize production. Crop and Environment, 1, 49-52.
    11. Contreras-Govea, F.E., Muck, R.E., Armstrong, K.L., & Albrecht, K.A. (2019). Nutritive value of corn silage in mixture with climbing beans. Animal Feed Science and Technology, 150, 1-8. https://doi.org/10.1016/j.anifeedsci.2008.07.001
    12. Curran, B., & Posch, J. (2010). Agronomic management of silage for yield and quality: Silage cutting height. Crop Insights, 10(2), 145-155.
    13. Demelash, N., Bayu, W., Tesfaye, S., Ziadat, F., & Sommer, R. (2014). Current and residual effects of compost and inorganic fertilizer on wheat and soil chemical properties. Nutrient Cycling in Agroecosystems, 100, 357–367. https://doi.org/10.1007/s10705-014-9654-5

    15. Doan, T.T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three-year mesocosm experiment. Science of The Total Environment, 514, 147–54.

    16. Emamu, T., & Wakgari, T. (2021) The effect of integrated application of vermicompost and NPS fertilizer on soil physicochemical properties and yield of maize (Zea May L.) crop at Toke Kutaye district, Western Ethiopia. Stechnolock Plant Biology and Research, 1, 1-16. https://doi.org/10.11648/j.ijaas.20210705.16

    17. Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B.M. (2022). Global maize production, consumption and trade: Trends and R&D implications. Food Security, 14, 1295-1319. https://doi.org/10.1007/s12571-022-01288-7

    18.FAOSTAT. (2022). Food and Agriculture Organization Corporate Statistical Database. https://www.fao.org/faostat/en/#data/QCL. https://doi.org/10.32614/cran.package.faostat

    19. Fengshan, L., Ying, C., Wenjiao, S., Shuai, Z., Fulu, T., & Quansheng, G.E. (2017). Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. Journal of Geographical Sciences, 27(9), 1085-1099. https://doi.org/10.1007/s11442-017-1423-3

    20. Fereidooni, M., Maghsoudi, E., Behzadi, Y., & Mojab Ghasroddashti, A. (2017). The effects of different nitrogen sources on yield and yield components of sweet corn (Zea mays L. saccharata). Journal of Agroecology, 9, 171-184. (in Persian with English abstract). https://doi.org/10.22067/jag.v9i1.52309

    21. Francis, H.R., Ma, T.F., & Rurak, M.D. (2021). Toward a standardized statistical methodology comparing optimum nitrogen rates among management practices: A bootstrapping approach. Agricultural and Environmental Letters, 6(2), e20045. https://doi.org/10.1002/ael2.20045

    22. Ghasemi, A., Ghanbari, A., Fakheri, B.A., & Fanaie, H.R. (2018). Effect of different tillage management on maize forage and grain quality and quantity under the influence of different sources of organic and chemical fertilizers. Journal of Agroecology, 10, 490-503. (in Persian with English abstract). https://doi.org/10.22067/jag.v10i2.59988

    1. Greene, W.L., Johnson, A.B., Paterson, J., & Ansotegui, R. (2018). Role of trace minerals in cow-calf cycle examined. In: Feedstuffs Newspaper, 70, 12-27.
    2. Hirzel, J., Matus, I., Novoa, F., & Walter, I. (2017). Effect of poultry litter on silage maize (Zea mays L.) production and nutrient uptake. Spanish Journal of Agricultural Research, 5, 102-109. https://doi.org/10.5424/sjar/2007051-226
    3. Nyiraneza, J., Chantigny, M.H., N’Dayegamiye, A., & Laverdière, M.R. (2009). Dairy cattle manure improves soil productivity in low. Agronomy Journal, 101, 207–214. https://doi.org/10.2134/agronj2008.0142
    4. Kannayan, S. (2020). Biofertilizers for Sustainable Crop Production, pp. 9-49. In: Biotechnology of biofertilizers. Ed., Kannayan, Narosa Publishing House, New Delhi, India.
    5. Karimi, H., Mazaheri, D., Peyghambariand, S.A., & Mirabzadeh Ardakani, M. (2012). Effect of organic and chemical fertilizers application on grain yield and yield components of maize (Zea mays L.) SC704. Iranian Journal of Crop Sciences, 13(4), 611-626. (in Persian with English abstract)
    6. Laegreid, M., Bockman, O.C., & Kaarstad, E.O. (1999). Agriculture, Fertilizer and Environment. CABI publishing. Porsgrunn, Norway. 294 pp.
    7. Laekemariam, F., & Gidago, G. (2012). Response of maize (Zea mays L.) to integrated fertilizer application in Wolaita, South Ethiopia. Advances in Life Science and Technology, 5, 21-30.
    8. Mahmud, A. & Rahouma, A. (2021). Effect of plant density on silage yield and quality of some maize (Zea mays L.) hybrids. Alexandria Science Exchange Journal, 42, 89-94. https://doi.org/10.21608/asejaiqjsae.2021.151909
    9. McCready, R.M., Guggolz, J., Silviera, V., & Owens, H.S. (1950). Determination of starch and amylase in vegetables. Analytical Chemistry, 22, 1156–1158. https://doi.org/10.1021/ac60045a016

    32. Mohammadi, H., Heidari, G.R., & Sohrabi, Y. (2020). The effects of biological and chemical nitrogen fertilizers and iron micronutrient on forge quality and yield of maize (Zea mays L.). Plant Production, 43, 185-198. (In Persian). https://doi.org/10.22055/ppd.2019.27736.1678

    1. Negassa W., Gebrekidan, H., &Friesen, D.K. (2005). Integrated use of farmyard manure and NP fertilizers for maize on farmers’ fields. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 106(2), 31–141.
    2. Nelson, D., & Sommers, L. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65, 109-112. https://doi.org/10.2134/agronj1973.00021962006500010033x
    3. Oyege, I., & Balaji Bhaskar, M.S. (2023). Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Systems, 7(4), 101. https://doi.org/10.3390/soilsystems7040101
    4. Pomeranz, Y., & Clifton, E. (1994) Food Analysis: Theory and Practice, 3rd Ed. Chapman and Hall.
    5. Pourjamshid, S.A., Moshatati, A., Siadat, S.A., Moradi Telavat, M.R., & Khodaei Joghan, A. (2023). Effect of drought stress, integrated application of chemical and organic fertilizers and seed sowing method on forage yield of silage maize (Zea mays L. cv. SC704). Iranian Journal of Crop Sciences, 25, 170-189. (In Persian). https://doi.org/20.1001.1.23223243.2021.19.1.29.0
    6. Rafie, M., & Koonani, A.R. (2018). Effect of vermicompost and nitrogen fertilizer on quantitative and qualitative yield of corn (Zea Mays L.). Iranian Journal of Field Crop Science, 50, 151-159. (In Persian). https://doi.org/10.22059/ijfcs.2018.249682.654431

    39- Rai, N., Ashiya, P., & Rathore, D.S. (2014). Comparative study of the effect of chemical fertilizers and organic fertilizers on Eisenia foetida. International Research Journal of Innovations in Engineering and Technology, 2, 12991-12998.

    1. Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and Plant Analysis Laboratory Manual. Second Edition. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA). 350 p.
    2. Sabourifard, H., Estakhr, A., Bagheri, M., & Hosseini, S.J. (2023). The quality and quantity response of maize (Zea mays L.) yield to planting date and fertilizers management. Food Chemistry Advances, 2, 100196. https://doi.org/10.1016/j.focha.2023.100196
    3. Sadeghi, A., & Mahrokh, F. (2020). Effect of transplanting and seed hydropriming on grain yield of maize (Zea mays L.) as second crop in temperate region of Kermanshah, Iran. Iranian Society of Crops and Plant Breeding Sciences, 22(1), 50–65. (in Persian with English abstract). https://doi.org/10.29252/abj.22.1.50
    4. Sharma, A.K. (2015). Biofertilizers for sustainable agriculture. Agronomy Biosystem, India, 407 pp.
    5. Sher, A., Adnan, M., Sattar, A., Ul-Allah, S., Ijaz, M., Hassan, M.U., Manaf, A., Qayyum, A., Elesawy, B.H., Ismail, K.A., Gharib, A.F., & El-Askari, A. (2022). Combined application of organic and inorganic amendments improved the yield and nutritional quality of forage sorghum. Agronomy, 12(4), 896. https://doi.org/10.3390/agronomy12040896
    6. Shirkhani, A., Nasrolahzadeh, S., & Zehtab Salmasi, S. (2019). Effect of biofertilizers and chemical fertilizers on yield and seed quality of corn under normal irrigation and drought stress conditions. Enviromental Stresses in Crop Sciences, 12, 781-791. (In Persian). https://doi.org/10.22077/escs.2018.542.1332
    7. Sigaye, M.H. (2022). Effects of using different organic sources in combination with mineral nitrogen fertilizer on soil fertility, grain yield, and maize quality. Advances in Life Science and Technology, 92, 1–9. https://doi.org/10.7176/ALST/92-02
    8. Silva, S.L.E., Silva, P.I.B.E., Oliveira, V.R.D., Oliveira, F.H.T.D., & Costa, L.R.D. (2017). Vermicompost application improving semiarid-grown corn green ear and grain yields. Revista Caatinga, 30(3), 551–558. https://doi.org/10.1590/1983-21252017v30n302rc
    9. Singh, R., Sharma, R.R, Kumar, S., Gupta, R.K., & Patil, R. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresource Technology, 99, 8507–8511. https://doi.org/10.1016/j.biortech.2008.03.034
    10. Stanton, D., Grombacher, A.W., Pinnisch, R., Mason, H., & Spaner, D. (2020). Hybrid and population density affect yield and quality of silage maize in central Alberta. Canadian Journal of Plant Science, 87, 867-871. https://doi.org/10.4141/CJPS06024
    11. Terefe, Z., Feyisa, T., Molla, E., & Ejigu, W. (2024). Effects of vermicompost and mineral fertilizers on soil properties, malt barley (Hordeum distichum L.) yield, and economic benefits. Agrosystems, Geosciences & Environment, 7(3), e20550. https://doi.org/10.1002/agg2.20550
    12. Thind, S.S., Sing, M., Sidhu, A.S., & Chhibba, I.M. (2021). Influence of continuous application of organic manures and nitrogen fertilizer on crop yield, N uptake and nutrient status under maize-wheat rotation. Journal of Research Punjab Agricultural University, 39, 357-361.
    13. Tufa, A. (2023). Vermicompost and NPSZnB fertilizer levels on maize (Zea mays L.) growth, yield component, and yield at Guto Gida, Western Ethiopia. International Journal of Agronomy, 23(1), 1–11. https://doi.org/10.1155/2023/7123826
    14. Van Soest, P.J., Robertson, J.B., & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3596. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
    15. Wei, W., Yan, Y., Cao, J., Christie, P., Zhang, F., & Fan, M. (2016). Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agriculture, Ecosystems and Environment, 225, 86–92. https://doi.org/10.1016/j.agee.2016.04.004
CAPTCHA Image