اثر روش‌های خاک‌ورزی و مدیریت بقایای گیاهی برجمعیّت نماتدهای بیمارگر گیاهی در تناوب گندم ((Triticum aestivum L.، جو (Hordeum vulgare L.)و پنبه (Gossypium hirsutum L.)

نوع مقاله : علمی - پژوهشی

نویسندگان

بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

چکیده

این تحقیق به‌منظور بررسی اثر شیوه‌های خاک‌ورزی و سطوح مختلف نگهداری بقایای گیاهی بر جمعیّت نماتدهای بیمارگر گیاهی در سیستم تناوبی گندم ((Triticum aestivum L.، جو  (Hordeum vulgare L.)و پنبه  (Gossypium hirsutum L.)به‌مدت پنج سال زراعی (395-1390) در ایستگاه تحقیقات کشاورزی گناباد اجرا شد. آزمایش بر پایه کرت‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی و با سه تکرار انجام شد. روش‌های خاک‌ورزی شامل، خاک‌ورزی متداول (شخم + دیسک + تسطیح + کاشت با بذرکار)، کم خاک‌ورزی (چیزل پیلر یا دیسک + کاشت با بذرکار) و بی خاک‌ورزی (کاشت مستقیم با بذرکار no till) در کرت‌های اصلی و مدیریت بقایای گیاهی شامل تیمار بدون بقایای گیاهی، حفظ 30 درصد و حفظ 60 درصد بقایای محصول سال قبل در کرت‌های فرعی قرار گرفتند. جمعیّت نماتدهای پارازیت گیاهی در هر کرت به‌روش الک و سانتریفیوژ استخراج و با استفاده از کلیدهای معتبر تا سطح جنس یا گونه تشخیص داده شدند و جمعیّت آن‌ها مورد مقایسه قرار گرفت. بر اساس نتایج، نماتد‌های پارازیت شامل نماتد مولد زخم ریشه (Pratylenchus thornei)، نماتد سنجاقی (Paratylenchus spp.)، نماتد مارپیچی (Helicotylenchus spp.)، Geocenamus spp.، نماتد ساقه و پیاز، (Ditylenchus spp.)،Boleodorus spp. ، Tylenchus spp. و Filenchus spp. تشخیص داده شدند. نتایج تجزیه واریانس نشان داد اثر تیمارهای خاک‌ورزی، نگهداری بقایا و برهم‌کنش خاک‌ورزی و نگهداری بقایا بر جمعیّت اغلب نماتدها و تعداد کل نماتدهای پارازیت گیاهی معنی‌دار نبوده است. اثر خاک‌ورزی بر جمعیّت Boleodorus spp. و برهم‌کنش خاک‌ورزی و نگهداری بقایا بر جمعیّت .Tylenchus spp در سطح پنج درصد معنی‌دار بوده است. بر پایه نتایج این تحقیق، تغییر در عملیات خاک‌ورزی از متداول به کم و بی خاک‌ورزی و حفظ بقایای گیاهی روی سطح خاک در سیستم تناوب زراعی گندم، گندم، جو، پنبه و گندم خطر افزایش جمعیّت نماتدهای مهم بیمارگر گیاهی را افزایش نمی‌دهد و با توجه به مزایای کشاورزی حفاظتی، این سیستم زراعی برای این اقلیم و مناطق مشابه قابل توصیه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Different Tillage Methods and Crop Residue Management on the Population of Plant Parasitic Nematodes in the Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.) and Cotton (Gossypium hirsutum L.) Rotation System

نویسندگان [English]

  • reza aghnoom
  • Masoud Ghodsi
Seed and Plant Improvement Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
چکیده [English]

Introduction
Conventional tillage-based farming systems had negative effects on the quality of essential natural resources including soil, water, and plant biodiversity. In the recent decades, Conservation Agriculture (CA) farming systems based on the three interlinked principles, namely: no or minimum mechanical soil disturbance, crop residue retention and crop rotation introduced and adopted as an alternative to conventional agriculture. However, the influence of conservation agriculture practices on the population of soil-borne plant pathogens including plant parasitic nematodes is not well studied. This study was performed to determine the effect of different tillage methods and different levels of residue management on the population of plant parasitic nematodes in the wheat-barley-cotton-wheat rotation system during five consecutive cropping seasons (2012-2017) at the Gonabad Agricultural Research and Education Organization.
Materials and Methods
The experimental design was split-plot layout based on a randomized complete block design with three replications. Three tillage methods (such as conventional tillage, minimum tillage, and no-tillage) were assigned to main plots and three levels of residue retention (no residue retention, 30% of residue retention, and 60% of residue retention) were assigned to sub plots. The planting area of each subplot was 450 m2 (30 m length and 15 m width) and the total are of each main plot was 4050 m2 (9×450 m). To compare the population density of plant pathogenic nematodes in different crops, a combined soil sample from each experimental plot was collected. The nematodes were extracted from soil samples using sieving and centrifugal-flotation technique and were identified to genus or species level using relevant systematic references. The data were analyzed using MSTAT-C statistical software package. The Duncan multiple range tests were applied to separate the differences between means.
Results and Discussion
Plant pathogenic nematodes including root lesion nematode (Pratylenchus thornei), pin nematode (Paratylenchus spp.), spiral nematode (Helicotylenchus spp.), Geocenamus spp., stem and bulb nematode (Ditylenchus spp.), Boleodorus spp., Tylenchus spp. and Filenchus spp. were identified in different treatments. Based on the results of analysis of variance, the effect of tillage methods, residue retention and the interaction between tillage × residue retention was not statistically significant on the population of most plant parasitic nematodes but the interaction between tillage × residue retention was significant on the total number of plant parasitic nematodes and the population of Tylenchus spp. and Geocenamus spp. In average the highest density of plant pathogenic nematodes was related to the no-tillage system with 30% of residue retention and the lowest density was related to the minimum tillage system with 30% of residue retention. The results of this study indicated that different tillage systems and different levels of residue retention under the wheat-barley-cotton-wheat rotation system do not affect dramatically the population density of important species of plant pathogenic nematodes including the root lesion nematode (Pratylenchus thornei). Some other studies reported that reducing tillage intensity was associated with reducing population densities of plant pathogenic nematodes, which was contrary to the results of this study.
Conclusion
The results of this study indicated that conservation agriculture under the wheat-barley-cotton-wheat rotation system in temperate climatic zone of Khorasan Razavi (Gonabad) does not significantly affect the population of plant pathogenic nematodes and increases the risk of crop damage by this group of plan pathogens.
Acknowledgements
This study has been financially supported by the Agricultural Research, Education and Extension Organization (AREEO) and the Seed and Plant Improvement Institute (SPII) (project number 17-43-03-9154-91002).The authors would like to thank AREEO and SPII for their financial and administrative supports.The excellent technical and laboratory assistance of A. Rastegar Paymani and A. Ahmadian Yazdi from the department of plant protection is acknowledged.

کلیدواژه‌ها [English]

  • Conservation agriculture
  • nematode
  • plant disease
  • rotation system
  • Tillage
Abd-Elgawad, M., and Askary, T.H., 2015. Impact of Phytonematodes on Agriculture Economy. In: T.H. Askary and P.R.P. Martinelli (Eds.). Biocontrol Agents of Phytonematodes. CABI Publishing, Wallingford, UK. p. 3-49.
Bailey, K.L., and Lazarovits, G., 2003.Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Reserch 72: 169–180.
Cook, R.J., 2006.Toward cropping systems that enhance productivity and sustainability. Proceedings of the National Academy of Sciences 103: 18389-18394.
Decraemer, W., and Hunt, D.J., 2006. Structure and classification. In: R.N. Perry and M. Moens (Eds.) Plant nematology. CABI Publishing, Wallingford, p. 3–32.
Duveiller, E., Bridge, J., Rutherford, M., and Keeling, S., 2004. Soil health and sustainability of the rice wheat systems of the Indo Gangetic plains. Rice-Wheat Consortium Paper Series 16. RWC, New Delhi.
Govaerts, B., Fuentes, M., Mezzalama, M., Nicol, J.M., Deckers, J., Etchevers, J.D., Figueroa-Sandoval, B., and Sayre, K.D., 2007 a. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Research 94: 209-219.
Govaerts, B., Mezzalama, M., Sayre, K.D., Crossa, J., Nicol, J.M., and Deckers, J., 2006. Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Applied Soil Ecology 32: 305-315.
Govaerts, B., Mezzalama, M., Unno, Y., Sayre, K., Luna-Guido, M., Vanherck, M., Dendooven, L., and Deckers, J., 2007 b. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology 37: 18–30.
Handoo, Z.A., and Golden, A.M., 1989. A key and compendium to the species of Pratylenchus Filipjev, 1936 (lesion nematodes). Journal of Nematology 21: 202-218.
Hobbs, P.R., and Govaerts, B., 2010. How conservation agriculture can contribute to buffering climate change. In: M.P. Reynolds (Ed.) Climate change and crop production. CAB International, Cambridge, USA, p. 177–199.
Hobbs, P.R., Sayre, K., and Gupta, R., 2008. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B 363: 543–555.
Hunt, D.J., 1993. Aphelenchida, Longidoridae and Trichodoridae: Their Systematics and Bionomics. CAB International, Hertfordshire, UK. 352 pp.
Jenkins, W.R., 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 48: 692.
Johnson, A.W., Dowler, C.C., and Handoo, Z.A., 2000. Population dynamics of Meloidogyne incognita, M. arenaria, and other nematodes and crop yields in rotations of cotton, peanut, and wheat under minimum tillage. Journal of Nematology 32: 52–61.
Kassam, A.H., Friedrich, T., Shaxson, F., and Pretty, J., 2009. The spread of conservation agriculture: Justification, sustainability and uptake. International Journal of Agricultural Sustainability 7: 1–29.
Krupinsky, J.M., Bailey, K.L., McMullen, M.P., Gossen, B.D., and Turkingtond, T.K., 2002. Managing plant disease risk in diversified cropping systems. Agronomy Journal 94: 198–209.
Loof, P.A.A., 1978. The genus Pratylenchus Filipjev, 1936 (Nematoda: Pratylenchidae): A review of its anatomy, morphology, distribution, systematics and identification. Landbowhoge school, Wageningen, The Netherlands.
López-Fando, C., and Bello, A., 1995.Variability in soil nematode populations due to tillage and crop rotation in semi-arid mediterranean agrosystems. Soil and Tillage Research. 36: 59-72.
Lupwayi, N.Z., Monreal, M.A., Clayton, G.W., Grant, C.A., Johnston, A.M., and Rice, W.A., 2001. Soil microbial biomass and diversity respond to tillage and sulphur fertilizers. Canadian Journal of Soil Science 81: 577–589.
Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33: 161-168.
Nickle, W.R., 1991. Manual of Agricultural Nematology. Marcel Dekker, Inc, New York. 1035 pp.
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., and Moënne-Loccoz, Y., 2009.The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341–361.
Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S., and Maafi, Z.T., 2011. Current nematode threats to world agriculture. Genomics and Molecular Genetics of Plant-nematode Interactions. In: J.T. Jones, G. Gheysen, and C. Fenoll (Eds.). Springer, Dordrecht, The Netherlands p. 21-43.
Okada, H., and Harada, H., 2007. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology 35: 582–598.
Overstreet, L.F., Hoyt, G.D., and Imbriani, J., 2010.Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil and Tillage Research 110: 42–50.
Page, K.L. Dang, Y.P. and Dalal, R.C.2020. The ability of conservation agriculture toconservesoil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems. 4: 1-17.
Raaijmakers, J.M., Paulitz, T.C., Steinberg, C., Alabouvette, C., and Moënne-Loccoz, Y., 2009. The Rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321: 341–361.
Schroeder, K.L. and Paulitz, T.C., 2006. Root diseases of wheat and barley during the transition from conventional tillage to direct seeding. Plant Disease 90: 1247-1253.
Seid, A., Piggin, C., Haddad, A., Kumar, S., Khalil, K., and Geletu, B., 2012. Nematode and fungal diseases of food legumes under conservation cropping systems in northern Syria. Soil and Tillage Research 121: 68–73.
Siddiqi, M.R., 1986. Tylenchida, Parasites of Plants and Insects. CAB International, UK.833 pp.
Spedding, T.A., Hamel, C., Mehuys, G.R., and Madramootoo, C.A., 2004.Soil microbial dynamics in maizegrowing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36: 499–512.
Thompson, J.P., Owen, K.J., Stirling, G.R. and Bell, M.J., 2008. Root lesion nematodes (Pratylenchus thornei and P. neglectus): A review of recent progress in managing a significant pest of grain crops in northern Australia. Australasian Plant Pathology 37: 235–242.
Turkington, T.K. and Clayton, G.W., 2000. Crop Rotation and Plant Disease Management. Available at: http://www.ssca.ca/conference/2000proceedings/Turkington.html
Twomlow, S., Urolov, J.C., Jenrich, M., and Oldrieve, B., 2008. Lessons from the field-Zimbabw, s conservation agriculture task force. The Journal of Semi-Arid Tropical Agricultural Research 6: 1–11.
Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P., Deckers, J., and Sayre, K.D., 2010. Conservation Agriculture, Improving Soil Quality for Sustainable Production Systems? In: R. Lal and B.A. Stewart (Eds.).Advances in Soil Science: Food Security and Soil Quality. CRC Press, Boca Raton, USA. pp. 137-208.
Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., and Thomashow, L.S., 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology 40: 309–348.
Westphal, A., Xing, L.J., Pillsbury, R., and Vyn, T.J., 2009. Effects of tillage on population densities of Heterodera glycines. Field Crops Research 113: 218–226.
Zhang, X., Xin, X., Zhu, A., Yang, W., Zhang, J., Ding, S., Muc, L., and Shaoa, L., 2018. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil and Tillage Research 178: 99-107.