استفاده از مدل SSM-iCropبرای پیش‏بینی فنولوژی، عملکرد و بهره‏وری آب کلزا (Brassica napus L.) در شرایط ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

2 گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

 
تغییرات اقلیمی، کاهش تنوع زیستی در منطقه و نگرانی در مورد امنیت غذایی به‌عنوان مشکلاتی مهم مطرح هستند؛ در این راستا بررسی شرایط جهت دستیابی به افزایش تولید محصولات کشاورزی ضروری به نظر می‌رسد. برای بررسی راه‌کارهای افزایش عملکرد، ابتدا بایستی پتانسیل عملکرد و عوامل محدود‌کننده عملکرد تعیین و مورد ارزیابی قرار گیرند. از مدل‌های شبیه‌سازی می‌توان به‌عنوان طرح توسعه‌یافته‌ای از آزمایش‌های مزرعه‌ای برای غلبه بر محدودیت‌هایی مانند زمان و هزینه استفاده نمود. این بررسی با هدف استفاده از مدل SSM-iCrop برای شبیه­سازی فنولوژی، عملکرد و بهره‌وری آب گیاه کلزادر سطح کشور انجام گرفت. در نتیجه پارامتریابی مدل، سه رقم زودرس، متوسط رس و دیرس برای کلزا تعیین شد، که درجه حرارت تجمعی برای کامل شدن دوره رشد آن‌ها به‌ترتیب 2000، 2500 و 2700 درجه سانتی‌گراد روز برآورد گردید. پس از تعیین پارامترهای مورد نیاز، به‌منظور ارزیابی مستقل مدل، با استفاده از داده­های مقالاتی که از آن‌ها برای برآورد پارامترها استفاده نشده بود، بر اساس تاریخ کاشت و مدیریت منطقه مورد نظر و همچنین آمار هواشناسی آن مناطق، مدل اجرا گردید تا درستی و صحت‌سنجی مدل صورت گیرد. با توجه نمودار 1:1 و آماره‏های 87/0r=، (درصد) 18CV= و (g.m-2) 04/67 RMSE= برای عملکرد دانه و 97/0r=، (درصد) 5CV=، (روز) 68/10RMSE= برای روز تا رسیدگی و 83/0r=، (mm.ha-1) 9/91RMSE=، 35/19CV= برای نیاز آبی می‍توان نتیجه گرفت که شبیه‍سازی رشد کلزا با استفاده از مدل SSM-iCrop رضایت‌بخش بوده است و نتایج حاکی از برآورد صحیح پارامترهای مدل و تصدیق‌کننده کارایی مدل در پیش‍بینی عملکرد کلزا در ایران می‍باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Using SSM-iCrop Model to Predict Phenology, Yield, and Water Productivity of Canola (Brassica napus L.) in Iran Condition

نویسندگان [English]

  • samaneh Rahban 1
  • Benjamin Torabi 1
  • Afshin Soltani 1
  • Ebrahim Zeinali 2
1 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
2 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
چکیده [English]

Introduction
Due to limitation of water and soil resources resulted from geological and climatic conditions of Iran as well as necessity of self-reliance in infrastructural issues, efficient usage of water and soil resources available in Iran is inevitable. Climatic changes, reduced biodiversity in the region and concerns about food security are regarded as important issues; hence, evaluation of conditions to attain improved crop production seems essential. To investigate yield improvement methods, yield potential and yield limiting factors (climate, soil, water, and genetic factors) should be determined and evaluated in the first step. Simulation models may be used as scaled-up designs of field experiments to overcome limitations such as time and costs. Crop  simulation  models  are  mathematical representations  of  plant  growth  processes  as  influenced  by  interactions  among genotype,  environment and crop  management. Using crop simulation models can be an efficient complement to experimental research.  Models are being used to understand the response of crops to possible changes in crop, cultural management, and environmental variables. Crop models use various plant and environmental parameters to simulate crop growth and should be calibrated and evaluated before usage.
Materials and Methods
 SSM-iCrop model predicts phenological stages as a function of temperature, day length.  Calculation of phenological development in the model is based on the biological day concept. A biological day is a day with optimal temperature, photoperiod, and moisture conditions for plant development. Leaf  area  development  and  senescence  is  a  function  of  temperature,  provide nitrogen  for  leaf  growth,  plant  density  and  nitrogen  remobilization.  To  simulate leaf area expansion, the first step is to determine on each day the  increase in leaf number  on  the  main  stem  using  the  phyllochron  (temperature  unit between emergences of successive leaves) concept. In this model biomass is estimated as a function of the received radiation and temperature.  Daily  increase  of  crop  mass  is  estimated  as  the  product  of  incident photosynthetic  active  radiation  (PAR,  MJ  m-2d-1),  the  fraction  of  that  radiation
intercepted  by  the  crop  (FINT)  and  efficiency  with  which  the intercepted  PAR  is used to produce crop dry mass, i.e., radiation use efficiency (RUE, g MJ-1).  Yield formation  in  the  model is simply  simulated  as  total  dry matter  production  during seed  filling  period  plus  a  fraction  of  crop  dry  mass at  BSG  (as  mobilized  dry matter).  Modeling  seed  growth  rate  and  yield  formation  in  the  current  model  is based on a modified linear increase in harvest index concept as described by Soltani and Sinclair (2011).
The model needs daily weather data, i.e. maximum and minimum temperatures, rainfall, and solar radiation. The model can be run under multiple scenarios/treatments over many years.
 Results
 As a result of the SSM-iCrop model parameterization, three early, medium and late maturing cultivars were determined for canola, which their cumulative degree days (GDD) for growth period completion were estimated as 2000, 2500 and 2700 °C days. After determination of the required parameters, the model was run based on sowing date, management, and meteorological statistics of the region using the data from the papers which were not used for parameterization, so as to validate the model. The average of the simulated data for days to maturity and yield were 222 (days) and 383 (g.m-2), respectively, whereas observed values for this traits were 223 (days) and 359 (g.m-2).
Conclusion:
 Based on the 1:1 line and statistics of r=0.87, CV=18% and RMSE=67.04 (g.m-2) for grain yield and r=0.97, CV=5% and RMSE=10.68 (days) for days to maturity, it may be concluded that simulation canola growth using SSM-iCrop model has been satisfactory and indicates accurate estimation of the model parameters, as well as serving as a verification of the model efficiency in prediction of canola yield under climatic conditions of major canola production regions of Iran.

کلیدواژه‌ها [English]

  • Evaluation
  • Parameterization
  • Plant models
  • simulation
Amir, J., and Sinclair, T.R., 1991. A model of water limitation on spring wheat growth and yield. Field Crops Research 28: 59–69. https://doi.org/10.1016/0378-4290(91)90074-6.
Amiri, E., Khorsand, A., Daneshian, J., and Yousefi, M., 2018. Predicting biomass and grain yield in canola under different water regimes and fertilizers using AquaCrop model. Journal of Irrigation Sciences and Engineering 41(1): 57-72. (In Persian with English Summary)
Arvaneh, H., and Abbasi, F., 2014. Validation and calibration of the model aqua crop for Brassica napus in field conditions. Journal of Iran Water Research 14: 9-17. (In Persian with English Summary)
FAO and DWFI., 2015. Yield gap analysis of field crops– Methods and Case Studies, by Sadras, V.O., Cassman, K.G.G., Grassini, P., Hall, A.J., Bastiaanssen, W.G.M., Laborte, A.G., Milne, A.E., Sileshi, G., Steduto, P. FAO Water Reports No. 41, Rome, Italy.
FAOSTST., 2014, Available in http://faostat.fao.org/site/339/default.aspx [15 June 2014].
Geerts, S., and Raes, D., 2009. Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management 96: 1275-1284.
Ghanem, M.E., Marrou, H., Biradar, C., and Sinclair, T.R., 2015. Production potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems 137: 24–38.
Hajjarpoor, A., Vadez, V., Soltani, A., Gaur, P., Whitbread, A., Babu, D.S., Gumma, M.K., Diancoumba, M., and Kholová, J., 2018. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Research 223: 93–104.
Hammer, G.L., Van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., Harland, P., and Muchow, R.C., 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany 61: 2185–2202.
Honar, T., Sarverestani, A., Kamgarhaghighy, A.A., and Shams, S., 2012. CropSyst calibration model to predict performance and simulation of plant growth. Journal of Soil and Water (Agricultural Science and Technology) 25(3): 593-605. (In Persian with English Summary)
Hoogenboom, G., Jones, J.W., Wilkens, P.W., Porter, C.H., Boote, K.J., Hunt, L.A., Singh, U., Lizaso, J.L., White, J.W., Uryasev, O., Royce, F.S., Ogoshi, R., Gijsman, A.J., Tsuji, G.Y., and Koo, J., 2012. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5. University of Hawaii, Honolulu, Hawaii (CD-ROM).
Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., and Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Hsiao, T.C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E., 2009. AquaCrop—the FAO crop model to simulate yield response to water: III Parameterization and testing for maize. Agronomy Journal 101: 448–459.
Jamieson, P.D., and Semenov, M.A., 2000. Modelling nitrogen uptake and redistribution in wheat. Field Crops Research 68: 21–29.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., and Ritchie, J.T., 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235–265.
Keating, B.A., Asseng, S., Brown, S.D., Carberry, P.S., Chapman, S., Dimes, J.P., Freebairn, D.M., Hammer, G.L., Hargreaves, J.N.G., Hochman, Z., Holzworth, D., Huth, N.I., Meinke, H., McCown, R.L., Probert, M.E., Robertson, M.J., Silburn, M., Smith, C.J., Snow, V.O., Verburg, K., and Wang, E., 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., and Hochman, Z., 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.
Kiniry, J.R., Blanchet, R., Williams, J.R., Texierb, V., and Jones, C.A., 1992. Sunflower simulation using the EPIC and A LM A N A C models. Field Crops Research 30: 403–423.
Koo, J., and Dimes, J., 2010. HC27 Generic Soil Profile Database. Version 1, July. International Food Policy Research Institute, Washington, DC.
Laurance, W.F., Sayer, J., and Cassman, K.G., 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 29: 107–116. https://doi.org/10.1016/j.tree.2013.12.001.
Marrou, H., Sinclair, T.R., and Metral, R., 2014. Assessment of irrigation scenarios to improve performances of lingot bean (Phaseolus vulgaris) in southwest France. European Journal of Agronomy 59: 22–28.
Mousavizadeh, S.F., Honar, T., and Ahmadi, S.H., 2016. Assessment of the aquacrop model for simulating canola under different irrigation management in a semiarid area. International Journal of Plant Production 10(4): 1735-6814.
Nehbandani, A.R., Soltani, A. Zeinali, E., Raeisi, S. and Rajabi, R., 2015. Parameterization and evaluation of SSM-soybean model for prediction of growth and yield of soybean in Gorgan. Journal of Plant Production Reasearch (JOPPR) 22(3): 1-26. (In Persian with English Summary)
Noorhosseini, S., Soltani, A., and Ajamnoroozi, H., 2018. Simulating peanut (Arachis hypogaea L.) growth and yield with the use of the Simple Simulation Model (SSM). Computers and Electronics in Agriculture 145: 63–75. https://doi.org/10.1016/j.compag.2017.12.020
Priestley, C.H.B., and Taylor, R.J., 1972. On the assessment of surface heat flux and evaporation using largescale parameters. Monthly Weather Review 100: 81-92.
Ritchie, J., Singh, U., Godwin, D., and Bowen, W., 1998. Cereal growth, development and yield. In Understanding options for agricultural production 79-98. Springer, Dordrecht.
Robertson, M.J., Carberry, P.S., Huth, N.I., Turpin, J.E., Probert, M.E., Poulton, P.L., Bell, M., Wright, G.C., Yeates, S.J., and Brinsmead, R.B., 2002. Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Crop Science 53: 429–446.
Sinclair, T., Farias, J., Neumaier, N., and Nepomuceno, A., 2003. Modeling nitrogen accumulation and use by soybean. Field Crops Research 81: 149-158.
Sinclair, T.R., and Muchow, R.C., 1999. Radiation use efficiency. Advances in Agronomy 65: 215–265.
Sinclair, T.R., Marrou, H., Soltani, A., Vadez, V., and Chandolu, K.C., 2014. Soybean production potential in Africa. Global Food Security 3: 31–40.
Soltani, A., 2009. Mathematical modeling of the crop. Publication Mashhad University Jihad, Iran p. 175. (In Persian)
Soltani, A., 2015. All About Importing Iranian Edible Oils. http://aftabeyazd.ir/6631.
Soltani, A., and Sinclair, T.R., 2011. A simple model for chickpea development, growth and yield. Field Crops Research 124: 252–260.
Soltani, A., and Sinclair, T.R., 2012. Identifying plant traits to increase chickpea yield in water-limitedenv ironments. Field Crops Research 133: 186–196. https://doi.org/10.1016/J.FCR.2012.04.006
Soltani, A., and Sinclair, T.R., 2012. Modeling Physiology of Crop Development, Growth, and Yield. CABI Publication, 322 pp.
Soltani, A., and Sinclair, T.R., 2015. A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crops Research 175: 37-46.
Soltani, A., and Torabi, B., 2009. Mathematical Modeling in Field Crop. Jehad Daneshgahi Mashhad Press, Iran.‏ (In Persian)
Soltani, A., Ghassemi-Golezani, K., Khooie, F.R., and Moghaddam, M., 1999. A simple model for chickpea growth and yield. Field Crops Research 62: 213–224.
Soltani, A., Hajjarpour, A., and Vadez, V., 2016. Analysis of chickpea yield gap and water-limited potential yield in Iran. Field Crops Research 185: 21–30.
Soltani, A., Maddah, V., and Sinclair, T.R., 2013. SSM-Wheat: a simulation model for wheat development, growth, and yield. International Journal of Plant Production 7: 711–740.
Soltani, A., and Sinclair T.R., 2011. A simple model for chickpea development, growth, and yield. Field Crops Research 124: 252–260.
Stockle, C.O., Donatelli, M., and Nelson, R., 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy 18: 289–307.
Tanner, C.B., and Sinclair, T.R., 1983. Efficient water use in crop production: research or re-search? In: Taylor, H. M., Jordan, W. R., and Sinclair, T. R (Eds.) Limitations to Efficient Water Use in Crop Production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin, pp. 1–27.
Torabi, B., Soltani, A., Galeshi, S., and Zeinali, E., 2011. Assessment of yield gap due to nitrogen management in wheat. Australian Journal of Crop Science 5: 879-884.
Vadez, V., Halilou, O., Hissene, H.M., Sibiry-Traore, P., Sinclair, T.R., and Soltani, A., 2017. Mapping water stress incidence and intensity, optimal plant populations, and cultivar duration for African groundnut productivity enhancement. Frontiers In Plant Science 8: 432.
Vadez, V., Soltani, A., and Sinclair, T.R., 2013. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Research 146: 1–9.
Van Ittersum, M., Leffelaar, P., van Keulen, H., Kropff, M., Bastiaans, L., and Goudriaan, J., 2003. On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18: 201–234. https://doi.org/10.1016/S1161-0301(02)00106-5
Yang, C., Gan, Y., Harker, K.N., Kutcher, H.R., Gulden, R., Irvine, B., and May, W.E., 2014. Up to 32 % yield increase with optimized spatial patterns of canola plant establishment in western Canada. Agronomy for Sustainable Development 34(4): 793-801.