مقایسه ردپای بوم‌شناختی، ردپای آب و اثرات محیط‌زیستی نظام‌های تولید گندم (Triticum aestivum L.) آبی و دیم بر اساس اندازه مزرعه (مطالعه موردی: منطقه بوشهر)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

2 پژوهشگر دوره پسادکتری، پژوهشگاه بیوتکنولوژی کشاورزی ایران، کرج، ایران

چکیده

ارزیابی چرخه حیات (LCA) یک روش مناسب برای مطالعه و بررسی اثرات زیست‌محیطی تولید یک محصول در چرخه زندگی آن گیاه در سامانه‌های تولید است. از این‌رو، این پژوهش با هدف ارزیابی چرخه حیات تولید گندم (Triticum aestivum L.) و دیم بر اساس اندازه زمین در منطقه بوشهر در سال زراعی 96-1395 انجام شد. برای انجام پژوهش، ابتدا 200 مزرعه زیر کشت گندم شناسایی شدند که 100 مزرعه متعلق به کشت دیم در منطقه گناوه و 100 مزرعه متعلق به کشت آبی در منطقه دشتی پایش شدند. انتخاب تعداد مزرعه در هر روش بر اساس فرمول کوکران انجام شد. پس از ثبت داده‌ها، مزارع بر اساس اندازه در هر روش به پنج گروه به‌ترتیب خیلی کوچک (کمتر از دو هکتار)، کوچک (دو الی پنج هکتار)، متوسط (پنج الی 10 هکتار)، بزرگ (10 الی 15 هکتار) و خیلی بزرگ (بالای 15 هکتار) گروه‌بندی شدند. واحد کارکردی بر مبنای تولید یک تن عملکرد دانه در نظر گرفته شد. مهم‌ترین شاخص‌های رده‌اثر مورد ارزیابی شامل گرمایش جهانی طی دوره 500 ساله، اسیدی شدن، یوتریفیکاسیون، تابش یونیزان، بدبو شدن هوا، تخلیه لایه ازون دوره 40 ساله، ردپای بوم‌شناختی و ردپای آب بودند. یافته‌های پژوهش نشان داد تمامی شاخص‌های رده‌اثر متعلق به مدل‌های تقاضای انرژی تجمعی، تقاضای اکسرژی تجمعی، پروتکل گازهای گلخانه‌ای، پتانسیل گرمایش جهانی طی دوره 100 ساله، ردپای بوم‌شناختی و ردپای آب در کشت دیم به‌میزان قابل توجهی بالاتر از کشت آبی بود. علاوه‌براین، شاخص‌های رده‌اثر متعلق به مدل CML-IA non-baseline مثل گرمایش جهانی طی دوره 500 ساله، اسیدی شدن، یوتریفیکاسیون، تابش یونیزان، بدبو شدن هوا، تخلیه لایه ازون دوره 40 ساله، مسمومیت انسان در دوره 100 ساله، مسمومیت زیستی گونه‌های آبزی و دریایی طی دوره 100 ساله در کشت دیم به‌طور قابل توجه و بسیار بالایی بیشتر از کشت آبی بود. همچنین، شاخص‌های رده‌اثر فلزات سنگین منتشر شده در هوا (سرب، کادمیم، روی و جیوه)، فلزات سنگین انتشار یافته در آب (کروم، روی، مس، کادمیم، جیوه، سرب و نیکل)، انتشار نیترات، فلزات و آفت‌کش‌ها به خاک، انتشار NOx، SOx، آمونیاک، گرد و غبار، COD، فسفر و پتاسیم نیز در روش کشت دیم بسیار بالاتر از کشت آبی بود. در روش کاشت آبی، با افزایش اندازه مزرعه از خیلی کوچک به خیلی بزرگ انتشار تمامی آلاینده‌های مورد بررسی روند کاهشی را نشان دادند، ولی در کشت دیم متغیر بود که بیشترین مقدار متعلق به مزارع خیلی کوچک بود. متغیر بودن مقدار این شاخص‌ها بر اساس اندازه مزرعه در کشت دیم می‌تواند به‌دلیل تغییرات کمتر مقدار خروجی (عملکرد) و تمامی ورودی‌ها در مزارع خیلی کوچک تا خیلی بزرگ باشد. لذا، این نتایج نشان می‌دهد که سهم آلاینده‌ها در کشت آبی در مقایسه با کشت دیم در منطقه بوشهر کمتر است. بنابراین، می‌توان با کشت آبی گندم و استفاده از کود سبز، خاک‌ورزی حفاظتی، راه‌اندازی سامانه‌های آبیاری نوین و استفاده بهینه از منابع آب به افزایش بهره‌وری آب و کاهش اثرات محیط‌زیستی منجر شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparsion of Ecological Footprint, Water Footprint and Environmental Impacts of Irrigated and Rainfed Wheat Production Systems based on Farm Size (Case Study: Boushehr Region)

نویسندگان [English]

  • morteza siavoshi 1
  • Salman Dastan 2
1 Department of Agricultural Science, Payame Noor University, I.R. of Iran
2 Postdoctoral researcher, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
چکیده [English]

Introduction[1]
Nowadays, agriculture plays a major role in environmental pollution, and knowledge regarding reducing input utilization in such systems can help us to decrease the limited input resource consumption and the consequent greenhouse gas (GHGs) emissions and environmental impacts. Environmental assessment is one of the accepted ways for achieving sustainable agricultural goals. Hence, life cycle assessment (LCA) is an appropriate way to study the environmental impact of a crop plant producing in its whole life cycle in production systems. Moreover, life cycle assessment (LCA) is an appropriate method for studying the environmental impacts of a crop product throughout its life cycle in production systems. Therefore, this research was carried out with the aim of evaluating the life cycle of irrigated and rainfed wheat productions based on the farm size in Bushehr region in 2016-17.
Material and Methods
To conduct research, at first, 200 wheat fields were identified which 100 farms belonging to rainfed cultivation in the Genaveh region and 100 farms belonging to irrigated cultivation in the Dashty region were monitored. After data recording, farms in each method were classified into five groups in terms of size level, including very small (-1), small (2-5 ha-1), medium (5-10 ha-1), large (10-15 ha-1) and very large (>15 ha-1). For each impact category, correspond characterization factors were used based on cumulative energy demand (CED), cumulative exergy demand (CexD), greenhouse gas protocol (GGP), IPCC 2013 GWP 100a, ecological footprint (EF), and water footprint (WF) methods in SimaPro8.2.3 software.
Results and Discussion
The findings of this study demonstrated that all impact category of cumulative energy demand (CED), cumulative exergy demand (CexD), greenhouse gas protocol (GGP), IPCC 2013 GWP 100a, ecological footprint (EF), and water footprint (WF) in rainfed cultivation were significantly higher than irrigated cultivation. In addition, the impact category indices associated with the CML-IA non-baseline model, such as global warming 500a, acidification, eutrophication, ionizing radiation, malodorous air, ozone layer depletion 40a, human toxicity 100a, freshwater and marine aquatic ecotoxicity 100a in rainfed cultivation, were significantly higher than irrigated cultivation. Moreover, impact category of heavy metals emitted into the air (Pb, Cd, Zn, and Hg), heavy metals emitted into water (Cr, Zn, Cu, Cd, Hg, Pb, and Ni), nitrate into soil, metals into soil, pesticide into the soil, and emission of NOx, SOx, NH3, dust, COD, phosphorous and nitrogen in the rainfed method was much higher than irrigated cultivation. In irrigated planting method, with increasing farm size from very small to very large, all of the pollutants revealed a decreasing trend, but it was varied in rainfed cultivation, with the largest amount belonging to very small farms. According to the results, it is possible to improve productivity by reducing nitrogen and fuel consumption as well as mechanization of agricultural crops. Based on the findings, it can be argued that farmers in both systems consider economic efficiency in production and are less likely to pay attention to environmental sustainability. It seems that by reducing the government subsidies related to chemical inputs and promoting conservation planting systems, the gap created could be offset to increase economic and environmental productivity in wheat cultivation in the region.
Conclusion
The variability of these indicators based on farm size level in rainfed cultivation can be due to lower variation in output (yield) and all inputs from very small to very large fields. Therefore, these results show that the share of pollutants in irrigated cultivation is lower than in rainfed cultivation in the Bushehr region. This issue is of great importance from the ecological point of view because the source of non-renewable energies, which are mostly fossil fuels, and the reliance on these resources in the future, is fraught with great risks.

کلیدواژه‌ها [English]

  • Cumulative exergy demand
  • Ecological footprint
  • Eutrophication
  • Global warming
Bare, J., 2011. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental. Clean Technologies and Environmental Policy pp. 1-10.
Bare, J.C., Norris, N.A., Pennington, D.W., and McKone, T., 2003. TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. Journal of Industrial Ecology 6: 49-78.
Brentrup, F., Kusters, J., Kuhlmann, H., and Lammel, J., 2004 a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored a crop production. European Journal of Agronomy 20(3): 247-264.
Brentrup, F., Kusters, J., Lammel, J., Barraclough, P., and Kuhlmann, H., 2004 b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology: II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20(3): 265-279.
Bosch, M.E., Hellweng, S., Huijbregts, M.A., and Frischknecht, R., 2007. Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. The International Journal of Life Cycle Assessment 12(3): 181-190.
Charles, R., Jolliet, O., Gaillard, G., and Pellet, D., 2006. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment 113(1/4): 216-225.
Chauhan, N.S., Mohapatra, P.K.J., and Pandey, K.P., 2006. Improving energy productivity in paddy production through benchmarking: an application of data envelopment analysis. Energy Conversion and Management 47: 1063-1085.
Clements, D.R., Weise, S.F., Brown, R., Stonehouse, D.P., Hume, D.J., and Swanton, C.J., 2005. Energy analysis of tillage and herbicide inputs in alternative weed management-systems. Agriculture, Ecosystems and Environment 52: 119-128.
Dastan S., Soltani, A., Noormohamadi, G., and Madani, H., 2015 a. CO2 emission and global warming potential (GWP) of energy consumption in paddy field production systems. Journal of Agroecology 6(4): 823-835. (In Persian with English Summary)
Dastan, S., 2012. Evaluation on agronomic and ecophysiological indices of lowland rice genotypes in modified agronomical systems. Ph.D. Thesis, Islamic Azad University, Science and Research Branch, Tehran College of Agriculture and Natural Resources. 278 pp. (In Persian with English Summary)
Dastan, S., Soltani, A., and Alimagham, S.M., 2018. Documenting the process of local rice varieties production in two conventional and semi-mechanized planting methods in Mazandaran province. Cereal Research 7(4): 485-502. (In Persian with English Summary)
Dastan, S., Soltani, A., Noormohamadi, G., and Madani, H., 2016 b. Estimation of the carbon footprint and global warming potential in rice production systems. Journal of Environmental Sciences 14(1): 19-22. (In Persian with English Summary)
Dastan, S., Ghareyazie, B., Soltani, A., and Omidi, M., 2016 a. The life cycle assessment (LCA) of rice in conventional, intensive and conservation systems. 2nd International and 14th National Iranian Crop Science Congress. Aug. 30-Sep. 1. University of Guilan, Rasht, Iran. (In Persian with English Summary)
Dastan, S., Ghareyazie, B., Mortazavi, E., Mohsenpour, M., and Abdollahi, S., 2017. The environmental life cycle assessment (LCA) of transgenic and non-transgenic rice cultivars. 2nd International and 10th National Biotechnology Congress of Islamic Republic of Iran. Aug. 29-31. Seed and Plant Improvement Institute, Karaj, Iran. (In Persian with English Summary)
Dastan, S., Noormohamadi, G., Madani, H., and Soltani, A., 2015 b. Analysis of energy indices in rice production systems in the Neka region. Journal of Environmental Sciences 13(1): 53-66. (In Persian with English Summary)
Engstrom, R., Wadeskog, A., and Finnveden, G., 2009. Environmental assessment of Swedish agriculture. Ecological Economics 60: 550-563.
Esmailpour, B., Khorramdel, S., and Amin Ghafouri, A., 2015. Study of environmental impacts for potato agroecosystems of Iran by using life cycle assessment (LCA) methodology. Journal of Crop Production 8(3): 199-224. (In Persian with English Summary)
Iriarte, A., Rieradevall, J., and Gabarrell, H., 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean condition. Journal of Cleaner Production 18: 336-345.
Khoramdel, S., Shabahang, J., and Ghafouri, A., 2017. Evaluation of environmental impacts for rice agroecosystems using life cycle assessment (LCA). Iranian Journal of Applied Ecology 5(18):1-14. (In Persian with English Summary)
Khorramdel, S., Ghorbani, R., and Amin Ghafori, A., 2015. Comparison of environmental impacts for dryland and irrigated barley agroecosystems by using life cycle assessment (LCA) methodology. Journal of Plant Production Research 22(1): 243-264. (In Persian with English Summary)
Khorramdel, S., Rezvani Moghaddam, P., and Ghafori, A., 2014. Evaluation of environmental impacts for wheat agroecosystems of Iran by using LCA methodology. Cereal Research 4(1): 27-44. (In Persian with English Summary)
Koga, N. 2008. An energy balance under a conventional crop rotation system in northern Japan: Perspectives on fuel ethanol production from sugar beet. Agriculture, Ecosystems and Environment 125: 101-110.
Meisterling, K., Samaras, C., and Schweizer, V., 2009. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production 17: 222-230.
Mirhaji, H., Khojastehpour, M., and Abbaspour-Fard, M.H., 2013. Environmental impact study of wheat productionin in Marvdasht Area of Iran. Journal of Natural Environment 66(2): 223-232.
Mitchell, T.D., 2003. Pattern scaling: An Examination of the accuracy of the technique for describing future climates. Climatic Change 60: 217-242.
Mollafilabi, A., Khorramdel, S., Aminghafori, A., and Hosseini, M., 2015. Evaluation of environmental impacts for saffron agroecosystems of khorasan based on nitrogen fertilizer by using lice cycle assessment (LCA). Journal of Saffron Research 2(2): 152-166. (In Persian with English Summary)
Nemecek, T., and Kagi, T., 2007. Life cycle inventories of Swiss and European agricultural production systems. Final Report Eco Invent V2.0 NO. 15a. Agroscope Reckenholz- Taenikon Research Station ARTM, Swiss centre for life cycle inventories, Zurich and Dubendorf, CH.
Nikkhah, A., Firouzi, S., Payman, S.H., and Khorramdel, S., 2016. Life cycle assessment of urea fertilizer consumption in Iran. Journal of Natural Environment (Iranian Journal of Natural Resources) 69(3): 853-864. (In Persian with English Summary)
Nikkhah, A., Khortamdel, S., Abedi, M., Firouzi, S., and Hamzeh Kalkenari, H., 2017. Study of Environmental impacts for tea production system in Chaboksar region of Guilan province through life cycle assessment. Journal of Agricultural Science and Sustainable Production 27(1): 181-195. (In Persian with English Summary)
Pathak, H., and Wassmann, R., 2007. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agricultural Systems 94: 807-825.
Pervanchon, F., Bockstaller, C., and Girardin, P., 2002. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agricultural Systems 72: 149-172.
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W., Suh, S., Weidema, B.P., and Pennington, D.W., 2004. Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International 30: 701-720.
Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., and Shiina, T., 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90: 1-10.
SimaPro., 2011. Software and Database Manual. Pré Consultants BV, Amersfoort, the Netherlands.
Soltani, A., Rajabi, M.H., Zeinali, E., and Soltani, E., 2013. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 50: 54-61.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K., 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris L.) production in the UK. Agricultural Systems 85: 101-119.
Wang, M., Wu, W., Liu, W., and Bao, Y., 2009. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Susttainable Development and World Ecology 14(4): 400-407.
Wood, S., and Cowie, A., 2004. A review of greenhouse gas emission factors for fertilizer production. Research and Development Division, State Forests of New South Wales. Cooperative research center for greenhouse accounting. The original study was: T.O. West and G. Marland. A synthesis of carbon sequestration, Carbon emissions and net carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, Ecosystems and Environment 91(1-3): 217-232.