بررسی روند تغییرات دمایی و اثرات آن بر طول دوره پر شدن دانه و پتانسیل عملکرد گندم (Triticum aestivum L.) در مناطق مختلف ایران در طی یک دوره 20 ساله (91-1371

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

میانگین دمای سطحی زمین در طی 30 سال گذشته در طی هر دهه 2/0 درجه سانتی‌گراد افزایش داشته است. ایران نیز از این گرمایش جهانی به دور نبوده و اثرات آن در نقاط مختلف کشور مشهود می‌باشد. این تغییرات دما اثرات زیادی بر دوره‌های رشدگیاهان دارد و به‌ تبع آن تولید گیاهان زراعی را نیز تحت تأثیر قرار می‌دهد. در این پژوهش روند تغییرات دمای 18 شهر از چهار ناحیه اقلیمی (خزری، گرم، معتدل و سردسیر) در طی 20 سال گذشته (91- 1371) مورد مطالعه قرار گرفت و با استفاده از مدل شبیه‌سازی WOFOST مراحل گل‌دهی و رسیدگی گندم آبی (Triticum aestivum L.) در هر منطقه مشخص شد. سپس تغییرات مراحل گل‌دهی و رسیدگی و همچنین عملکرد گندم و رابطه آن‌ها با دما در هر ناحیه بررسی شد. نتایج نشان داد که در طی سال‌های مورد مطالعه، در تمامی 18 شهر کشور، دمای میانگین سالانه افزایش یافت که در آن اردبیل بیشترین شدت افزایش دما (159/0 درجه سانتی‌گراد به‌ازای هر سال) و پارس‌آباد مغان کمترین شدت افزایش دما (066/0 درجه سانتی‌گراد به‌ازای هر سال) را نشان داد. واسنجی و تغییرات پارامترهای مدل WOFOST بر اساس داده‌های واقعی و صحت‌سنجی مدل با RMSE% و آزمون شیب خط رگرسیون برای شهرهای منتخب هر ناحیه اقلیمی انجام شد. نتایج نشان داد که این مدل با دقت بالایی قادر به تخمین مراحل گل‌دهی و رسیدگی گندم بود. در مناطق گرم و مرطوب خزری افزایش دمای میانگین سالانه، با شدت کمی طول دوره پر شدن و عملکرد دانه را افزایش داده که احتمالاً به‌دلیل اثرات تعدیلی رطوبت هوا در این مناطق بوده است. امّا در مناطق گرم و خشک جنوب و مرکز ایران افزایش دما به‌تدریج با ایجاد تنش در دوره رسیدگی دانه منجر به کاهش طول دوره پر شدن دانه و کاهش عملکرد گندم شده است. در مناطق معتدل نیز با افزایش دما، کاهش طول دوره پر شدن و عملکرد دانه گندم مشهود بود. با افزایش دمای میانگین سالانه در مناطق سردسیر، طول دوره پر شدن دانه افزایش یافته که دلیل آن احتمالاً عدم برخورد ابتدای دوره زایشی با سرمای خسارت‌زا بوده است و قرار گرفتن دوره پر شدن دانه در محدوده دمایی مناسب در این نواحی منجر به افزایش عملکرد شده است. میانگین عملکرد پتانسیل گندم با در نظر گرفتن سهم شهرهای مورد مطالعه از تولید کل کشور در طی یک دهه (81-1371) به‌میزان 8/1% و در طی دو دهه (91- 1371) به‌میزان 28/3 % کاهش داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Temperature Changes and Its Impacts on Seed Filling Period and Grain Yield of Wheat (Triticum aestivum L.) in Different Regions of Iran (1992-2012)

نویسندگان [English]

  • Reza Abbasi Alikamar
  • Mahdi Nassiri Mahallati
  • Alireza Koocheki
Ferdowsi university of Mashhad
چکیده [English]

Introduction
It is accepted that the global annual average temperature has been increased during recent decades. The climate of Iran is also affected by this global warming. Some studies indicated the increasing of mean annual temperature of Iran between 3.5-4.5○C by 2050. Crop phenology is directly related to temperature, so climate change could significantly change the phenology and yield of crops. Modelling phenology is a way to simulate the timing of phenological stages based on climatic factors. Amongst models, WOFOST is known as a powerful model for simulation of phenological stages and yield of wheat. In this study climate warming of Iran was evidenced. Based on this fact, trends of potential grain yield and time of flowering and maturity of wheat were studied in different climatic zones of Iran during 1992-2012. It is expected that understanding the thermal induced of phenological changes, can lead us to better field management decision making.
Materials and Methods
Weather data of 18 cities from 4 climatic zones of Iran (northern warm and humid (Zone 1), southern warm and dry (Zone 2), temperate (Zone 3) and cold and high elevation (Zone 4)) were analyzed during 1992-2012 and the long-term trends of air temperature were detected by linear regression. The crop growth simulation model WOFOST, was used to simulate the time of flowering and maturity and also the potential grain yield of winter wheat. Calibration and validation of model was conducted in 4 selected cities from each zone using statistical measures. The consequences of temperature on duration of grain filling period and also yield of wheat were determined.
Results and Discussion
Results indicated that the mean annual air temperature was significantly increased in all cities during 1992-2012. The highest increasing rate (regression line slope) belonged to Ardabil (0.159○C.y-1) and the lowest rate was observed in Pars Abad Moghan (0.06○C.y-1). Validation of WOFOST in 4 selected cities from each climatic zone, showed the perfect ability of model in simulating the flowering and maturity time of wheat. Regression analysis showed that the grain filling period was increased in accordance with temperature rise in zone 1 and 4 whereas it was shortened in zone 2 and 3. Grain yield showed the same trends predicted for grain filling period in different climates. Slop of linear regression between temperature and yield was significant except in Gorgan (Zone 1). In all cities the relation between grain filling period and yield was direct and positive.
Conclusion
Although temperature has increased in all climatic zones of Iran, flowering and maturity time and grain yield of wheat has showed different responses. There was a nonsignificant slope of regression line in the north humid climate, which means that the humidity of northern part of Iran (south of Caspian Sea) enhanced stability for this area. Annual mean temperature in southern warm and dry zone of Iran ranged between 24.3-27.9 ○C that could be stressful for wheat, and hence resulted in shorter grain filling period and less grain yield. It seems that in temperate zones (such as Mashhad) increasing temperature caused yield reduction due to faster GDD accumulation and lack of time to complete remobilization of photosynthetic materials. On the other hand, in cold areas increasing temperature could reduce the risk of cold stress in flowering time, resulting in longer grain filling period and higher grain yield. According to WOFOST simulation results, during 20 years study (1992-2012), mean potential yield of wheat increased 6.25 and 11.42 percent in northern warm and humid (Zone 1) and cold and high elevation (Zone 4), respectively and decreased 12.17 and 13.11 percent in southern warm and dry (Zone 2) and temperate (Zone 3), respectively. Total mean potential yield of wheat, by consideration of proportion of each zone in total wheat production of Iran, showed reduction of 1.8% and 3.28% during 1992-2001 period (10 years) and 1992-2012 period (20 years), respectively.          
 

کلیدواژه‌ها [English]

  • Climate change
  • Global warming
  • Regression
  • simulation
  • WOFOST
1. Ainsworth, E.A., and Long, S.P., 2005. What have we learned from 15 years of Free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351–372.
2. Alijani, B., Mahmoudi, P., Salighe, M., and Rigi chahi, A., 2011. Study of annual maximum and minimum tempratures changes in Iran. Geographical Research 26(3):101-122. (In Persian with English Summary)
3. Asseng, S., Ewert, F., Martre, P., Rotter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kersebaum, K.C., Koehler, A.K., Muller, C., Naresh Kumar, S., Nendel, C., O/'Leary, G., Olesen, J.E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A.C., Semenov, M.A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y., 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5: 143-147.
4. Azizi, H., Nezami, A., Khazaeii, H., and Nassiri Mahalati, M., 2010. Evaluation of cold tolerance in wheat (Triticum aestivum L.) cultivars under field conditions. Iranian Journal of Field Crops Research 6(2): 342-352. (In Persian with English Summary)
5. Bafkar, A., Boroumandnasab, S., Behzad, M., and Farhadi Bansouleh, M., 2014. Estimation of potential yield of grain maize in Mahidasht, Kermanshah using WOFOST, a crop growth simulation model. Water and Irrigation Management 42(4): 799-808. (In Persian Persian with English Summary)
6. Boogaard, H.L., van Diepen, C.A., Roetter, R.P., Cabrera, J.M.C.A. and Laar, H.H.V., 1998. WOFOST 7.1: User's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5. Technical document / DLO Winand Staring Centre; 52. DLO Winand Staring Centre, Wageningen.
7. Boogaard, H., De Wit, A., te Roller, J., and Van Diepen, C., 2014. WOFOST Control Center 2.1: User’s guide for WOFOST Control Center 2.1 and the crop growth simulation model WOFOST 7.1. 7. Wageningen, The Netherlands: Alterra.
8. Bromwich, D.H., Nicolas, J.P., Monaghan, A.J., Lazzara, M.A., Keller, L. M., Weidner, G.A., and Wilson, A.B., 2013. Central West Antarctica among the most rapidly warming regions on Earth. Nature Geoscience 6: 139–145.
9. Burkart, S., Manderscheid, R., and Weigel, H.J., 2004. Interactive effects of elevated atmospheric CO2 concentrations and plant available soil water content on canopy evapotranspiration and conductance of spring wheat. European Journal of Agronomy 21: 401–417.
10. Catalin, L., Bettina, B., Fabio, M., and Anca, L.D., 2009. Adaptation of WOFOST Model from CGMs to Romania conditions. Journal of Plant Development 16: 97–102.
11. Cleland, E.E., Chiariello, N.R., Loarie, S.R., Mooney, H.A., and Field, C.B., 2006. Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences 103(37): 13740-13744.
12. Delghandi, M., Massah-Bovani, A., Ajorlou, M.J., Broomandnasab, S., and Andarzian, B., 2014. Risk assessment of climate change impacts on production and phenology of wheat (Case study: Ahvaz region). Water and Irrigation Management. 4: 161-175. (In Persian with English Summary)
13. Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J., and Ewert, F., 2014. Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy 64: 98-113.
14. Gharineh, M., Bakhshandeh, A., Andarzian, B., and Fayezizadeh, N., 2016. Agro-climatic zonation of Khouzestan province based on potential yield of irrigated wheat using WOFOST model. Agroecology 4(3): 255-264. (In Persian with English Summary)
15. Hamidianpour, M., Baaghideh, M., and Mohsen Abbasnia, M., 2016. Assessment of the precipitation and temperature changes over South East Iran using downscaling of General Circulation Models outputs. Physical Geography Research Quarterly 48(1): 107-124. (In Persian with English Summary)
16. http://climate.nasa.gov/evidence/
17. IPCC., 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental. Panel on Climate Change [T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. doi:10.1017/CBO9781107415324.
18. Kasmaii, M., 2006. Climate and Architecture. Nashre Khak. Tehran, Iran, 131 pp. (In Persian)
19. Khoshakhlagh, F., Gharibi, E., and Shafiei, Z., 2011. The study of the lowest temperature changes in Iran. Geography and Environmental Planning Journal 42(2): 199-216. (In Persian with English Summary)
20. Koocheki, A., Nassiri Mahallati, M., and Jafari, L., 2016. Evaluation of climate change effect on agricultural production of Iran: I. Predicting the future agroclimatic conditions. Iranian Journal of Field Crops Research 13(4): 651-664. (In Persian with English Summary)
21. Koocheki, A., Nassiri Mahallati, M., Sharifi, H.R., Zand, E., and Kamali, G.A., 2001. A simulation study for growth, phenology and yield of wheat cultivars under the doubled CO2 concentration in Mashhad Conditions. Desert (Biaban) 6(2): 117-127. (In Persian with English Summary)
22. Koocheki, A., Nassiri, M., Alizadeh, A., and Ganjali, M., 2009. Modelling the impact of climate change on flowering behaviour of saffron. Iranian Journal of Field Crops Research 7(2): 583-594. (In Persian with English Summary)
23. Koocheki, A., Nassiri, M. Jamali, J.B., and Marashi, H., 2006. Evaluation of the effects of climate change on growth characteristics and yield of rainfed wheat in Iran. Agricultural Sciences and Technology 20(7): 82-95. (In Persian with English Summary)
24. Koocheki, A., Nassiri, M., Soltani, A., Sharifi, H., and Ghorbani, R., 2006. Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran. Climate Research 30: 247–253
25. Koocheki, A., Sharifi, H.R., and Zand, E., 1998. The ecological consequences of global climate change. Jahad Daneshgahi Mashhad Press, Mashhad, Iran. (In Persian)
26. Koocheki, A., and Kamali, G., 2010. Climate change and rainfed wheat production in Iran. Iranian Journal of Field Crops Research 8(3): 508-520. (In Persian with English Summary)
27. Koocheki, A., and Nassiri Mahallati, M., 2008. Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Journal of Field Crops Research 6(1): 139-153. (In Persian with English Summary)
28. Koppen, W.D., 1936. Das geographische system der klimat. Handbuch der klimatologie: p. 46.
29. Li, Y., Zhou, Q., Zhou, J., Zhang, G., Chen, C., and Wang, J., 2014. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecological Modelling 291: 15-27.
30. Lobell, D.B., Schlenker, W., and Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science 333-616.
31. Masoudian, S.A.A.F., 2004. Temperature trends in Iran during the last half century. Geography and Development. 2(3): 89-106. (In Persian with English Summary)
32. Menzel, A., Sparks, T.H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., Braslavska, O.G., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mage, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A.J.H., Wielgolaski, F.E., Zach, S., and Zust, A.N.A., 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969-1976.
33. Ministry of Agriculture-Jahad., 2015. Year book of Agricultural Statistics. 2013. Available at Website: http:// www.maj.ir/Portal/Home/Default.aspx? CategoryID =c5c8bb7b-ad9f-43dd-8502-cbb9e37fa2ce. (In Persian)
34. Modhej, A., 2006. Effect of heat stress after anthesis on grain yield of wheat and barley genotypes. Conference of German Genetics Society and the GermanSociety for Plant Breeding. p. 95.
35. Moradi, R., Koocheki, A., and Nassiri Mahallati, M., 2014. Effect of climate change on maize production and shifting of planting date as adaptation strategy in Mashhad. Sustainable Agriculture and Production Science 23: 111-130. (In Persian)
36. NASA., 2011. Climate change: How do we know? Online at http:// climate.nasa.gov/ evidence/
37. Nassiri Mahallati, M., 1999. Modelling potential crop growth processes. Jahad Daneshgahi Mashhad Press, Mashhad, Iran. 280 pp. (In Persian)
38. Nassiri Mahallati, M., Koocheki, A., Kamali. G., and Marashi, H., 2006. Effect of Climate Change on Agroclimatic Indices of Iran. Agricultural Sciences and Technology 20(7): 71-82. (In Persian with English Summary)
39. Nassiri, M., Koocheki, A., Kamali G.A., and Shahandeh, H., 2006. Potential impact of climate change on rainfed wheat production in Iran. Archives of Agronomy and Soil Science 52: 113-124.
40. Pachauri, R.K., and Reisinger, A., 2007. IPCC Fourth Assessment Report. Summary for Policymakers.
41. Radmehr, M., 1997. Effect of heat stress on physiology of growth and development of wheat. Ferdowsi University Press. Mashhad, Iran. (In Persian)
42. Saidi, A., and Choukan, R., 2000. Summary of research and research achievements of Seed and Plant Improvement Institute. Nashr-e-Amoozesh Press. Tehran, Iran. 140 pp. (In Persian)
43. Sarmadnia, G., 1995. Effect of low temperature on the growth and yield of five winter wheat cultivars. Journal of Agricaltural Science 26: 1-9.
44. Seed and Plant Improvement Institute., 1995-2010. Annual Report of Cereal Breeding Projects. Cereal Research Department, Karaj, Iran. (In Persian)
45. Shekhar, C., Singh, D., Singh, R., and Rao, V.U.M., 2008. Prediction of wheat growth and yield using WOFOST model. Journal of Agrometeorology 10: 400-402.
46. Shirgholami, H., and Ghahraman, B., 2005. Study of time trends in annual mean temperature of Iran. Water and Soil science. Journal of Science and Technology of Agriculture and Natural Resources 9(1): 24-39. (In Persian with English Summary)
47. Tabari, H., and Hosseinzadeh Talaee, P., 2011. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change 79: 1-10.
48. Wu, D., Yu, Q., Lu, C., and Hesgsdijk, M., 2006. Quantifying production potentials of winter wheat in north China plain. European Journal of Agronomy 24: 226-235.
49. Zahedi, M., Sari Saraf, B., and Jameei, J., 2007. The analysis of spatio-temporal variation of temperature in north-west of Iran. Geography and Development 5(10): 183-197. (In Persian with English Summary)