بررسی اثر آبیاری تناوبی و مقادیر مختلف کود نیتروژن بر حجم آب و رشد و شاخص‌های رشدی گیاه برنج (Oryza sativa L.) (رقم هاشمی) در شرایط آب‌وهوایی گیلان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد تاکستان

2 مؤسسه تحقیقات برنج، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

3 استادیار مؤسسه تحقیقات برنج، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

چکیده

به‌منظور بررسی اثر آبیاری تناوبی و مقادیر مختلف کود نیتروژن بر سرعت رشد و شاخص‌های رشدی گیاه برنج (Oryza sativa L.) رقم هاشمی، آزمایشی در مزرعه تحقیقاتی مؤسسه تحقیقات برنج استان گیلان در دو سال زراعی 94- 1393 و 95- 1394 به‌صورت آزمایش اسپلیت پلات در قالب طرح بلوک‌های کامل تصادفی با سه تکرار به‌اجرا درآمد. عامل اصلی آزمایش شامل آبیاری تناوبی در پنج سطح (آبیاری روزانه به‌صورت غرقاب (شاهد) دانشگاه آزاد اسلامی واحد تاکستان 5، 8، 10 و 15 روز یک‌بار) و عامل فرعی شامل کود نیتروژن با شش سطح (0، 30، 45، 60، 75 و90 کیلوگرم نیتروژن در هکتار) بودند. نتایج نشان داد که اثر متقابل آبیاری و مقادیر مختلف کود نیتروژن بر صفات وزن خشک برگ، ساقه و کل، شاخص سطح برگ و سرعت جذب خالص در سطح احتمال یک درصد معنی‌دار شدند. همچنین CGR در عامل آبیاری در سطح احتمال یک درصد معنی‌دار شد. در بین سطوح آبیاری، آبیاری هر روزه بیشترین سطح برگ و سرعت رشد محصول را دارا بود. نتایج به‌دست آمده نشان داد که در شرایط تنش کم (آبیاری هر روزه و 5 روزه) با توجه به اختلاف کم معنی‌دار بین مقدار کود نیتروژن 75 و 90 کیلوگرم در هکتار، با در نظر گرفتن مشکلات زیست‌محیطی و اجتناب از آلایندگی و کاهش هزینه‌ها در اراضی شالیزاری مقدار 75 کیلوگرم در هکتار از منبع اوره را می‌توان توصیه نمود. امّا در تنش زیاد مقدار کود 90 کیلوگرم در هکتار شرایط بهتری را ایجاد کرد. آبیاری هر روزه و 90 کیلوگرم کود نیتروژن با 6663 مترمکعب در هکتار بیشترین بهره‌وری آب مصرفی و آبیاری 15 روزه و صفر کیلوگرم کود نیتروژن (4691 مترمکعب در هکتار) کمترین را داشتند. بر این اساس، به نظر می­رسد مصرف کود نیتروژن با قابلیت رهاسازی آهسته و انتخاب روش مناسب آبیاری باعث بهبود عملکرد می‌گردد. با توجه به نتایج می‌توان بیان کرد که مناسب‌ترین روش آبیاری، آبیاری با فاصله 5 روزه می‌باشد، چون با مقدار آب مصرفی کمتر نسبت به آبیاری هر روزه عملکرد دانه بالاتری به‌‌دست آمدمی­توان آن را به‌عنوان راهکارهای مدیریتی برای تولید پایدار این گیاه مدنظر قرار داد که این امر به‌ویژه در شرایط محدودیت آب و با توجه به اهمیت این گیاه می­تواند نقش بسزایی در بهبود کاهش نیاز آبی، بهره­وری آب و امنیت غذایی ایفا نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Irrigation Interval and Nitrogen Amount on Water Requirement, and growth of Rice (Oryza sative L.) Hashemi Cultivar under Gilan Climate Conditions

نویسندگان [English]

  • Kaveh Sabokro fomani 1
  • Seyed Ali Reza Valadabadi 1
  • Masood Kavoosi 2
  • Hamid Reza Zakerian 1
  • Mohammad Reza Yazdani 3
1 Azad university of Takestan
2 Rice Research Institute of Iran
3 Rice Research Institute of Iran
چکیده [English]

Introduction
Rice (Oryza sative L.) is an essential crop among cereals and shared a significant component in the global human diet, especially in developing countries. About 80% of water consumption in Asia is for the agriculture sector, and half of it would be used for rice production. Rice needs roughly 8000 to 1000 m3 of water per hectare and 1Kg of its dry matter needs to 700 liters of water. Rice farmers tend to keep their farms flooded continuously to make sure the product is more productive by too much water storage and, in this way, prevent against weeds. Up to the year 2050, rice production should increase by 50%, which requires improved cultivars and enhanced field management. For achieving high crop yield, applying fertilizers to maintain high soil fertility is quite necessary. Nitrogen is one of the main crop’s nutrient requirements and is a limiting factor for rice production. Nitrogen fertilizer affects the accumulation of dry matter and its allocation in different parts of the plants. The difference in the accumulation of dry matter in response to nitrogen arises from the difference in the amount of active radiation received by photosynthesis of vegetative canopy and plant efficiency in the use of solar radiation. Nitrogen deficiency reduces leaf growth, and leaves become less colorful since the amount of chlorophyll in the leaves decreases, accelerates aging leaves, therefore, reduce the amount of solar radiation, and it reduces the accumulation of dry matter in plants, finally. Nitrogen, plays an important and direct role in the development of grains by increasing the level of enzymes and enzyme activity, and this increases the transfer and processing of sucrose to seeds. Many studies have shown that increasing nitrogen up to a threshold has highly increased rice grain yield. Growth analysis indices are essential to realize how the crop yield may change in response to management and environmental factors. Therefore the application of appropriate management factors that have a positive effect on growth indices can enhance grain yield.
Materials and Methods
This study was conducted as split-plot based on a randomized complete block design in Rice Research Center of Rasht in 2014-2015 and 2015-2016. Irrigation with five levels (daily irrigation, rotational irrigation with 5, 8, 10, and 15 days interval) as main plot and nitrogen at six levels (0.0, 30, 45, 60, 75, and 90 kg.ha-1) as subplot were considered in this experiment. At flowering and harvest leaf and dry stem matter was measured. Then leaf area index (LAI), Crop Growth Rate (CGR), Net Assimilation Rate (NAR), Leaf Area Ratio (LAR), Relative Growth Rate (RGR) and Specific Leaf Area (SLA) were calculated.
Results and Discussion
Our results showed that the interaction of irrigation and nitrogen significantly (P≤0.01) affects stem and leaf dry matter, LAI, and NAR. Irrigation was significantly (P≤0.01) effective on CGR. Among irrigation levels, daily irrigation resulted in the highest LAI and NAR. Our results indicated that daily and every five days irrigation and considering almost no difference between 75 and 90 kg.ha-1 nitrogen, then 75 kg.ha-1 urea can be suggested as the optimum fertilization value. However, at higher irrigation intervals, 90 kg.ha-1 nitrogen would be recommended. Daily irrigation and 90 kg.ha-1nitrogen showed the highest water consumption (6663 m3.ha-1), but 15 days irrigation interval and 0.0 kg.ha-1nitrogen showed the lowest water consumption (4691 m3.ha-1). It seems that low rate release nitrogen fertilizers, along with suitable irrigation practice, would be the optimum management to achieve high yield and lowest possible irrigation water consumption.
Conclusion
The results of this study showed that applying nitrogen and irrigation increased LAI and crop productivity indices, which resulted in higher biomass yield production. Among irrigation levels, daily irrigation resulted in the highest LAI and CGR. Under daily irrigation and five days of interval irrigation, the application of 75 kg.ha-1 nitrogen can be recommended. Although there was not a significant difference between 70 and 95 kg.ha-1 nitroge, but due to environmental concerns, 75 kg.ha-1was recommended.
 

کلیدواژه‌ها [English]

  • Food security
  • Slow release fertilizers
  • Bio-environment
  • Sustainable production
  • Water scarcity
1. Afza, R., Hardarson, G., Zapata, F., and Danso, S.K.A., 1987. Effects of delayed soil and foliar N fertiliztion on yield and N2 fixation of soybean. Plant and Soil 3: 361-368.
2. Al-Barrak, K.M., 2006. Irrigation interval and nitrogen level effects on growth and yield of canola (Brassica napus L.). Science Journal of King Faisal University Basis of Applied Science 7(1): 87-103.
3. Al-Ithawi, B., Deibert, E.J., and Olson, R.A., 1980. Applied N and moisture level effects on yield, depth of root activity, and nutrient uptake by soybeans. Agronomy Journal 72: 827-832.
4. Amiri, E., Razavipour, T., and Bannayan, M., 2011. Evaluation of yield and water productivity in rice under irrigation management and plant density with use ORYZA2000 model. Electronic Journal of Crop Production 4(3): 1-19. (In Persian with English Summary)
5. Ather Nadeem, M., Iqbal, Z., Ayub, M., Mubeen, K., and Ibrahim, M., 2009. Effect of nitrogen application on forage yield and quality of maize sown alone and in mixture with legumes. Pakistani Journal of Life Society Science 7(2): 161-167.
6. Aziz, O., Hussain, S., Rizwan, M., Riaz, M., Bashir, S., Lin, L., Mehmood, S., Imran, M., Yaseen, R., and Guoan, L., 2018. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and Fertilizer-N management. Environmental Science and Pollution Research 25(17): 16601–16615.
7. Azizi, M., 1999. Effect of irrigation regimes and K fertilizer on agronomic, physiologic and biochemic characters of soybean. Ph.D. Thesis in Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
8. Bouman, B.A.M., and Tuong, T.P., 2001. Field water management to save water and increase its productivity in irrigated lowland rice. Agriculture and Water Management 49(1, 2): 11-30.
9. Caliskan, S., Ozakaya, I., Caliskan, M.E., and Arslan, M., 2008. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crops Research 108: 126-132.
10. Carmelita, M., Albertoa, R., Wassmanna, R., Hiranob, T., Miyatac, A., Hatanob, R., Kumara, A., Padrea, A., and Amante, M., 2011. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management 98: 1417–1430.
11. Dahatonde, B.N., 1995. Effect of NPK fertilization on growth and yield of paddy. PKV Research Journal 19: 184-185.
12. Darzi, A.A., Mirlotfi, S.M., Shahnazari, A., Ejlali, F., and Mahdian, M.H., 2013. Effect of surface and subsurface drainage in paddy fields on rice yield and its components. Iranian Journal of Water Research in Agriculture 26: 61-70. (In Persian with English Summary)
13. De Datta, S.K., and Gumez, K.A., 1980. Changes in phosphorus and potassium response in wetland rice soils in south and south-east Asia. International Rice Research Institute. Los Banos, Philippines.
14. Dibert, E.J., Bigercyo, M., and Olson, R.A., 1979. Utilization of N15 fertilizer by nodulating and nonnodulating soybean isolines. Agronomy Journal 71: 715-723.
15. Dobbermann, A., Cassman, K.G., Mamaril, C.P., and Sheehy, J.E., 1998. Management of phosphorus, potassium and sulfur in intensive, irrigated lowland rice. Field Crops Research 56: 113-138.
16. Egli, D.B., Guffy, R.G., and Leggett, J.E., 1985. Partitioning of assimilate between vegetative and reproductive growth in soybean. Agronomy Journal 77: 917-922.
17. Esfahani, M., S.M., Sadrzadeh, S.M., Kavoosi, M., and Dabagh- Mohammadi-Nasab, A., 2005. Study the effect of different levels of nitrogen and potassium fertilizers on yield, yield components and growth of rice cv. Khazar. Iranian Journal of Crop Science 7(3): 226-242. (In Persian with English Summary)
18. Faraji, F., Esfahani, M., Kavoosi, M., Nahvi, M., and Rabiei, B., 2011. Effect of nitrogen fertilizer application on grain yield and milling recovery of rice (Oryza sativa cv. Khazar). Iranian Journal of Crop Sciences 13(1): 61-77. (In Persian with English Summary)
19. Gardner, F.P., Pearce, R.B., and Mitchell, R.L., 2010. Physiology of Crop Plants. Scientific Publishers (India), Crops, 327 pp.
20. Ghobady, M., Jahanbin, S.H., Motalebifard, R., and Parvizi, K.H., 2011. Effect of Phosphorus biofertilizers on yield and yield components of potato. Journal of Management System 21(2): 117-130. (In Persian with English Summary)
21. Ghorbanli, M., Hashemi Moghaddam, S., and Fallah, A., 2006. Study of interaction effects of irrigation and nitrogen on some morphological and physiological characteristic of rice plant (Oryza sativa L.). Journal of Agricultural Sciences 12(2): 415- 428. (In Persian with English Summary)
22. Gilani, A., and Absalan, S.A., 2004. Effects of different irrigation regimes on the performance level and growth of rice cultivars in Khuzestan. Final Report of the Research Project. Agricultural Research and Education Organization. (In Persian)
23. Ham, G.E., Liener, I.E., Evans, S.D., Frazier, R.D., and Nelson, W.W., 1975. Yield and composition of soybean seed as affected by N and S fertilization. Agronomy Journal 67: 293-297.
24. Iqbal, J., Cheema, A.A., Niazi, M.N., and Dogar, M.S., 1991. Response of potassium application to rice wheat in salt affected soils. Technique 8: 19-30.
25. Jahan, M., Nassiri Mahallati, M., Amiri, M.B., and Ehyayi, H.R., 2013. Radiation absorption and use efficiency of sesame as affected by biofertilizers inoculation in a low input cropping system. Industrial Crops and Products 43: 606-611.
26. Kadiyala, M.D.M., Jones, J.W., Mylavarapu, R.S., Li, Y.C., and Reddy, M.D., 2015. Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management 149: 23-32.
27. Karimi, M.M., and Siddique, K.H.M., 1991. Crop growth and relative growth rates of old and modern wheat cultivars. Australian Journal of Agriculture Research 42: 13-20.
28. Katoh, M., Iwata, A., Shaku, I., Nakajima, Y., Matsuya, K., and Kimura, M., 2003.Impact of water percolation on nutrient leaching from an irrigated paddy field in Japan. Soil Use and Management 19: 298-304.
29. Kaushal, T., Onda, M., Ito, S., Yamazaki, A., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, Y., and Ohyama, T., 2006. Effect of placement of slow- release fertilizer (Lime nitrogen) applied at different rates on growth, N2 fixation and yield of soybean (Glycine max). Journal of Agronomy and Crop Science 192: 417-426.
30. Keshavarz Afshar, R., Chaichi, M.R., Alipour Jahangiri, A., Ansari Jovini, M., Moghaddam, H., Ehteshami, S.M.R., and Khavazi, K., 2011. Effects of foliar application of plant growth promoting rhizobacteria on forage and grain yield of forage sorghum (var. Speedfeed). Iranian Journal of Field Crop Science 42(3): 575-584. (In Persian with English Summary)
31. Kumudini, S.D., Hume, J., and Chu, G., 2001. Genetic improvement in short- season soybeans. Ι. Dry matter accumulation, partitioning, and leaf area duration. Crop Science 41: 391-398.
32. Lin, J.L., and Lin, T.L., 1985. Tiller number and leaf area index in rice community as influenced by planting density and N-fertilizer. Journal of the Agricultural Association of China 129: 14-34.
33. Lu, Z., and Neumann, P.M., 1998. Water- stressed maize, barley and rice seedling show species diversity in mechanisms of leaf growth inhibition. Journal of Experimental Botany 49(329): 1945-1952.
34. Makara, O., Basnayake, J., Tsubo, M., Fukai, S., Fisher, K.S., Cooper, M., and Nesbitt, H., 2006. Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Research 1: 48-58.
35. Marschner, H., 1995. Mineral Nutrition of Higher Plants. Academic Press London.
36. Matsuo, T., Kumazawa, K., Ishii, R., and Hirata, H., 1995. Science of the Rice. Food and Agriculture Policy Research Center.
37. Murata, Y., 1961. Studies on the photosynthesis of rice plant and culture significance. Bulletin of National Institute for Agriculture Science 9: 1-169.
38. Neumann, P.M., 1993. Rapid and reversible modification of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant, Cell and Environment 16: 1107-14.
39. Ntanos, D.A., and Koutroubas, S.D., 2002. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research 74: 93-101.
40. Ohnishi, M., Horie, T., Homma, K., Supapoj, N., Takano, H., and Yamamoto, S., 1999. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Research 64: 109-120.
41. Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., O'Toole J.C., and Basnayake, J., 2004. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands. Field Crops Research 89: 281-297.
42. Parsa, M., Ganjali, A., Rezayeeanzadeh, A., and Nezami, A., 2011. Effect of supplemental irrigation on yield and yield components and correlation between varieties cultivated in spring chickpea. Iranian Journal of Field Crops Research 9(3): 310-321. (In Persian with English Summary)
43. Peng, S., 2000. Single-leaf and canopy photosynthesis of rice. In: J.E. Sheehy, P.L. Mitchell, and B. Hardy (Eds.). Redesigning Rice Photosynthesis to Increase Yield. International Rice Research Institute. Los Banos, Philippines.
44. Prasad, B., and Prasad, J., 1997. Response of rice to potassium application in calcareous soils. Journal of Potassium Research 13: 50-57.
45. Rezaei, M., and Nahvi, M., 2007. Effect of different irrigation management methods on water use efficiency and rice yield. Agricultural Science 1(9): 15-25.
46. Sahoo, N.C., and Guru, S.K., 1998. Physiological basis of yield variation in short duration cultivars of yield variation in short duration cultivars of rice. Indian Journal of Physiology 3: 36-41.
47. Sajadi Nik, R., and Yadavi, A.R., 2013. Effect of nitrogen fertilizer, vermicompost and nitroxin on growth indices, phonological stages and grain yield of sesame. Electronic Journal of Crop Production 6(2): 73-99. (In Persian with English Summary)
48. Starling, M.E, Wood, C.W., and Weaver, D.B., 1998. Starter nitrogen and growth habit effects on late-planted soybean. Agronomy Journal 90: 658-662.
49. Takahashi, Y., Chinushi, T., Nagumo, Y., Nakano, T., and Ohyama, T., 1991. Effect of deep placement of controlled release nitrogen fertilizer (coated urea) on growth, yield and nitrogen fixation of soybean plants. Soil Science and Plant Nutrition 37: 223-231.
50. Takahashi, Y., Chinushi, T., Nakano, T., and Ohyama, T., 1992. Evaluation of N2 fixation and N absorption activity by relative Ureide method in field grown soybean plants with deep placement of coated urea. Soil Science and Plant Nutrition 38: 699-708.
51. Touchton, J.T., and Rickerl, D.H., 1986. Soybean growth and yield response to starter fertilizers. Soil Science and Society of America Journal 50: 234-237.
52. Tuong, T.P., 1999. Productive water use in rice production: Opportunities and limitations. Journal of Crop Production 2: 241-264.
53. Uexkull, H.R.V., 1976. Fertilizing for high yield rice. International Potash Institute. Berne, Switzerland.
54. Van Iersel, M.W., 2000. Growth and maintenance respiration of Catharanthus roseus L. estimated from CO2 exchange. Journal of American Society of Hotriculture Science Acta Horticulture 519: 133-140.
55. Van Iersel, M.W., and Seymour, L., 2000. Growth respiration, maintenance respiration, and carbon fixation of vinca: a time series analysis. Journal of American Society of Horticulture Science 125(6): 702-706.
56. Wilson, C.E., Slaton, N.A., Dickson, P.A., Norman, R.J., and Wells, B.R., 1996. Rice response to phosphorus and potassium fertilizer application. Research Series- Arkansas Agricultural Experimental Station 450: 15-18.
57. Wood, C.W., Torbert, H.A., and Weaver, D.B., 1993. Nitrogen fertilizer effects on soybean growth, yield, and composition. Journal of Production Agriculture 6: 354-360.
58. Yang, X., Bouman, B.A.M., Wang, H., Wang, Z., and Zhao, J., 2005. Performance of temperate aerobic rice under different water regimes in North China. Agricultural Water Management 74: 107-122.
59. Yazdandoost Hamedani, M., 2003. A study of the effect of nitrogen rates on yield, yield components and nitrate accumulation in potato varieties. Iranian Journal of Agriculture Science 24(4): 977-985. (In Persian with English Summary)
60. Ying, J., Peng, S., He, Q., Yang, H., Yang, C., Visperas, R.M., and Cassman, K.G., 1998. Comparison of high-yield rice in tropical and subtropical environments. I. Determinants of grain and dry matter yields. Field Crops Research 57: 71-84.
61. Yoshida, S., 1975. Factors that limit the growth and yields of upland rice In: Major Research in upland Rice. IRRI. Los Banos. Philippines pp. 46-71
62. Yoshida, S., 1981. Fundamental of rice crop science. International Rice Research Institute. Los Baños, Philippines.
63. Yousefi Falakdehi, A., 2006. The interaction effect of water stress and salinity on yield of rice. M.Sc. Thesis in Department of Irrigation, Faculty of Agriculture, University of Shiraz, Shiraz, Iran. (In Persian with English Summary)