مقایسه بهره‌وری انرژی و پتانسیل گرمایش جهانی در نظام‌های تولید آفتابگردان (Helianthus annuus L.) دیم

نوع مقاله : علمی - پژوهشی

نویسنده

مرکز تحقیقات کشاورزی و منابع طبیعی سمنان (شاهرود)، سازمان تحقیقات، آموزش و ترویج کشاورزی، شاهرود

چکیده

این مطالعه به­منظور بررسی جریان انرژی و پتانسیل گرمایش جهانی مزارع آفتابگردان (Helianthus annuus L.) در شهرستان میامی انجام شد. اطلاعات لازم در مورد سه روش کاشت مرسوم، روش کم‌خاک‌ورزی و کاشت مستقیم از طریق مصاحبه حضوری و تکمیل پرسش‌نامه در سال 1389 تهیه شد. پس از جمع‌آوری اطلاعات، پارامترهای مربوط به انرژی و پتانسیل گرمایش جهانی ناشی از انتشار گازهای گلخانه‌ای بر مبنای معادل دی اکسید کربن محاسبه گردید. نتایج نشان داد که میزان انرژی ورودی در سه روش کاشت مرسوم، روش کم‌خاک‌ورزی و کاشت مستقیم به ترتیب برابر 13971، 12117 و 10865 مگاژول بر هکتار بود. در هر سه روش در مقایسه با سایر نهاده‌ها،کود نیتروژن و سوخت مصرفی بیشترین سهم انرژی ورودی را داشتند. بیشترین و کمترین میزان بهره‌وری انرژی به ترتیب مربوط به کشت مستقیم (15/0 کیلوگرم بر مگاژول) و کشت رایج (11/0 کیلوگرم بر مگاژول) بود. کمترین مقدار پتانسیل گرمایش جهانی از روش کاشت مستقیم به میزان 1449 کیلوگرم معادل دی اکسید کربن در هکتار بود. در روش مرسوم و کم‌خاک‌ورزی، پتانسیل گرمایش جهانی حاصل از مصرف سوخت بیشترین مقدار تولید گازهای گلخانه‌ای به ترتیب 3/43 و 5/36 درصد از کل تولید گازهای گلخانه‌ای  را به خود اختصاص داده است. در روش کاشت مستقیم، پتانسیل گرمایش جهانی حاصل از مصرف کود نیتروژن بیشترین مقدار تولید گازهای گلخانه‌ای (3/47 درصد) را به خود اختصاص داد. با توجه به نتایج بدست آمده مدیریت عملیات زراعی با رویکرد حذف عملیات اضافی (کاهش مصرف سوخت) و مدیریت مصرف کود نیتروژن، به­منظور افزایش بهره‌وری انرژی،کاهش تولید گازهای گلخانه‌ای و اثرات زیست‌محیطی ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Energy Productivity and Global Warming Potential in Rain-fed Sunflower (Helianthus annuus L.) Production Systems

نویسنده [English]

  • zaynolabedin omidmehr
Agricultural Engineering Research Department, Semnan (Shahrood) Agricultural and Natural Resources Research Center, AREEO, Shahrood, lran. Email: zshamabadi@gmail.com
چکیده [English]

Introduction
The main objective in agriculture production, so far, focused mostly on the increase of yield and production. Whereas today, economical and sustainable production is more important with regard to product quality, reduction of input consumption, conservation of natural resources and environment. Conservation tillage methods stabilize the soil productivity, reduce greenhouse gas emissions and protect the environment. The atmospheric concentration of greenhouse gases (GHGs) has been increased considerably in recent year's, as a result, human activities. Carbon dioxide (CO2) is the most important anthropogenic GHG; its annual emissions increased by about 80% between 1970 and 2004. Conservation tillage systems are increasingly considered as sustainable options to reduce the aftermaths of improper soil tillage. The objective of this study was to investigate energy flow and greenhouse gases emissions of sunflower production in three different tillage methods in northeastern part of Iran.
 Materials and methods
In order to evaluate the effect of three methods of sunflower production (conventional tillage and sowing, reduced tillage and direct seeding method) on energy consumption and global warming potential in rainfed conditions, this study was performed in the Kalpoosh of shahrood. Data were gathered from thirty representative fields by using a face-to-face questionnaire method and monitoring production practices and inputs used. After gathering of data, energy parameters and global warming potential were calculated based on CO2 balance. The energy amount of each input was calculated by multiplying the amount of consumed input on energy's equivalent. The output energy of sunflower was calculated by multiplying the crop yield on energy's equivalent. Other calculations of inputs and outputs in each method performed by energy coefficients.
Results & Discussion
The results indicated that total input energy in the conventional method, reduced tillage, direct seeding were 13169, 11814 and 10600 MJ.ha-1, respectively. Thus, conventional method had the highest rate of energy consumption (30 % higher than of direct seeding). Similar results reported by some researchers. The highest amount of total energy input related to nitrogen fertilizer and diesel fuel. Seedbed preparation had the highest rate of fuel and energy consumption (43.5 %) followed by nitrogen Fertilizer (37.6). Maximum of direct and indirect consumed energy, related to fuel and nitrogen, respectively. Similar results reported by some researchers. In three tillage methods, the share of irreproducible energy was the highest and small share of total energy consumption related to renewable energy. Rajabi et al. (2011) reported similar results. The energy efficiency of conventional method was less than other methods. This is due to the high share of machinery and fuel energy and greater use of workers and low yield per hectare. Reducing inputs consumption can be increased efficiency in agricultural systems. Feyzbakhsh and Soltani (2013) reported similar results. Maximum and minimum of energy productivity related to direct seeding (0.15 kg.MJ-1) and conventional method (0.11 kg.MJ-1), respectively. Maximum and minimum of global warming potential (GWP) was related to conventional method (1731 Kg.CO2 eq.ha-1) and direct seeding (1405 Kg.CO2 eq.ha-1), respectively. This issue is compatible with more fuel consumption in conventional method compared with direct seeding. In conventional method, the most rate of GWP was related to fuel consumption (44.8%) followed by nitrogen fertilizer (38.8%) and farm machinery (8.3%).
Conclusions
Based on this study results, through reducing of fuel consumption (replacing of obsolescent machinery and usage of modern implement, performing of farm operations in suitable soil moisture content and preventing of additional operations) and accurate consuming of nitrogen (according to soil testing), it is possible to reduce fuel consumption, greenhouse gas emission and environmental pollutions. 

کلیدواژه‌ها [English]

  • CO2
  • Direct seeding
  • Greenhouse gases emission
  • Tillage
Abbasi, F., Saadat-Fard, M., and Khalil-Alemi, A. 2009. Investigating the effect of various tillage methods on soil physical properties. The 5th National Conference on Agricicultural Machinery Engineering & Mechanization. 27-28 August. Mashhad, Iran. (In Persian with English Summary)
Abdollahpour, S., and Zarei, S. 2010. Evaluation of energy balance in rainfed wheat fields of Kermanshah province. Journal of Sustainable Agriculture Knowledge 2: 97-106. (In Persian with English Summary)
Adnan, C., Altynta, G., and Erdal, G. 2009. Energy consumption patterns and economic analysis of irrigated wheat and rainfed wheat production. Case study for Tokat region. Turkey Journal of Food, Agriculture and Environment. 639-644.
Ahadi, M.S. 2014.Workshop on Empowering Departments in Calculating Greenhouse gas inventory. University of the Environment. Karaj, Iran. (In Persian)
Alipour, A., Keshavarz Afshar, R., Ghaleh Golab Behbahani, A., Karimi Nejad, A., and Mohammadi, V. 2013. Investigation of energy flow in irrigated wheat ecosystems: A case study: Rey town ship. Journal of Sustainable Agriculture Knowledge 23: 69-106. (In Persian with English Summary)
Ahmadi-Hamzian M., and Hassanzadeh qourt-tapeh A. 2008. Evaluation of energy and economy in nuts and oily seeds of sunflower in Khoy. Journal of Research in Crop Sciences 1 (2): 67-79. (In Persian with English Summary)
Almassi, M., Kiani, S., and Lovimi, N., 2008. Principles of Agricultural Mechanization (4th ed.). Jungle Publications, Javdane. (In Persian)
Al-Kaisi, M.M., and Yin, X. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality 34:437–445.
Amiri, S.R., and Rezvani Moghaddam, P. 2016. An Input–output energy and economical analysis of pistachio (Pistacia vera L.) Production systems in county of Zarand, Kerman province. Journal of Agroecology. 8 (3): 452-462. (In Persian with English Summary)
Beare, M.H., Cabrera, M.L., Hendrix, P.F., and Coleman, D.C. 1994. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Science Society American Journal 58:777–786.
Brentrup F., Küsters J., Lammel J., and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5 (6): 349- 357.
Dastan, S., Soltani, A., Noor-Mohammadi, G., and Madani, H. 2014. CO2 emissions and global warming potential due to energy consumption in rice planting systems. Journal of Agroecology 6 (4): 823-835. (In Persian with English Summary)
Department of the Environment (DE). 2014. National Greenhouse Accounts (NGA) Factors. Australian National Greenhouse Accounts, Available at: www.environment.gov.au.
Erdal, G., Esengun, K., and Guduz, O. 2007. Energy use and economic analysis of sugar beet production in Tokat province of Turkey. Energy 32(1): 34-5.
FAO. 2009. Energy use in Agriculture and Forestry. http://faostat. Fao.org/site/689/fault.aspx.
Feyzbakhsh, M.T., and Soltani, A. 2013. Energy flow and global warming potential of corn farm (Gorgan). Engineering Journal of Crop Production 6 (2): 89-107. (In Persian with English Summary)
Geraghty, J., 2008. Sustainable crop production and climate change - reducing emissions in the Irish arable sector. In: Institute of International and European Affairs (Ed.) Proceedings of the Conference The Greening of Irish Agriculture, Institute of International and European Affairs, Dublin Castle, Ireland, pp. 20–21.
Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S, Anvarkhah, S., and Aghel, H. 2011. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy, 88: 283-288.
Hatfield, J.L., Allmaras R.R., Rehn G.W., and Lowery, B. 1998. Ridge tillage for corn and soybean production: Environmental quality impacts. Soil Tillage Research 48: 145-154.
Haj-Seyed-Hadi, M.R. 2012. Energy Efficiency of Potato Crop in Major Production Regions of Iran. International Journal of Agriculture and Crop Sciences 4 (2): 51-53.
Hussaini, Y.I. 2011. Energy inputs and crop yield relationship for sesame production in North Central Nigeria. Journal of Agricultural Technology 7 (4): 907-914.
IEA. 2009. World Energy Outlook, Paris, France, www.iea.org.
Jastrow, J.D., Boutton, T.W., and Miller, R.M. 1996. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society American Journal 60:801–807.
Karbasi A., and Rahimi, N. 2009. Environmental considerations of the energy sector. International Energy Agency (IEA).
Kazemi, H., Alizadeh, P., Nehbandan, A. 2016. Investigation of energy flow in rainfed and irrigated wheat fields of Shahrekord under two tillage methods. Journal of Agroecology 8 (2): 281-295. (In Persian with English Summary)
Kazemi, H., Kamkar, B., Lakzaei, S., Badsar, M., and Shahbyki, M. 2015. Energy flow analysis for rice production in different geographical regions of Iran. Energy 84: 390-396.
Kern, J.S., and Johnson, M.G. 1993. Conservation tillage affects national soil and atmospheric carbon levels. Soil Science Society American Journal 57: 200–210.
Khalili-Araqi, M., Sharzehee, G.H., and Barkhordari, S. 2013. Analysis of Co2 emission due to energy consumption in Iran. Environmental Sciences 38 (61): 93-104. (In Persian with English Summary)
Khanali, M., Elhami, B., Eslami, H., and Hosseinpoor, S. 2018. Evaluating and comparing environmental indicators of hybrid maize production with three different harvesting methods in Alborz province using the life cycle assessment method. Journal of Agroecology 9 (4): 892-909. (In Persian with English Summary)
Khorramdel S., and Amin-Ghafuri, A. 2015. Evaluation of environmental impacts for saffron agroecosystems of Khorasan based on nitrogen fertilizer by using Life Cycle Assessment (LCA). Journal of Saffron Research 2: 152-166. (In Persian with English Summary)
Koochacki, A., and Hosseini, M. 1999. Energy productivity in agricultural ecosystems. Mashhad University Press, Iran. 317 pp. (In Persian)
Lal, R., and Kimble, J.M. 1997. Conservation tillage for carbon sequestration. Nutr Cycling Agroecosyst 49: 243–253.
Lal, R. 2004. Carbon emission from farm operations. Environment International Journal 30: 981-990.
Mehrabi-Boshrabadi, H., and Esmaaeli, A. 2012. Analysis of energy input-output in Iran agriculture. Agriculture Economy and Extension 19: 74. (In Persian with English Summary)
Merino, A., Perez-Batallon, P., and Macıas, F., 2004. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry Journal 36: 917–925.
Mirhaji, H., Khojastehpoor, M., and Abaspoor-fard, M.H. 2014. Evaluation of Environmental impacts of wheat production in Marvdasht of Iran. Publication Surrounding Life Natural. Iranian Journal of Natural Sources 66 (2): 223-232. (In Persian with English Summary)
Mohammadi, A., and Omid, M. 2010. Economic analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy 87: 191-196.
Mrini, M., Senhaji, F., and Pimentel, D. 2002. Energy analysis of sugar beet production under traditional and intensive farming systems and impact on sustainable agriculture in Morocco. Journal of Sustainable Agriculture 20 (4):5-27.
Namdari, M., Asadi-Kangarshahi, A., and Akhlaghi-Amiri, N. 2011. Input-output energy analysis of citrus production in Mazandaran province of Iran. African Journal of Agricultural Research 6 (11): 2558-2564.
Noor-mohammadi, J., Moolayee, K., Almassi, M., and Borqeae, A.M. 2014. Evaluation of energy indexes and their effects on irrigated wheat production (Neyriz of Fars). The 2th National Proceeding of Agricultural Machinery and Mechanization of Iran. 29-30 January. Mashhad, Iran. (In Persian)
Ozkan, B., Akcaoz, H., and Karadeniz, F. 2004. Energy requirement and economic analysis of citrus production in Turkey. Energy Conversion and Management 45 (2): 1821-1830.
Pazoki-torodi, M., Ajam-novrozi, H., Qanbari-malidareh, A., Dadashi, M.R., and Dastan, S., 2018. Assessment of energy bill and carbon dioxide emissions in wheat production fields. Journal of Agroecology 9 (4): 1168-1193. (In Persian with English Summary)
Piemental, D., Bevadi, G., and Fast, S. 1983. Energy efficiency of farming system: Organic and conventional agriculture. Agriculture, Ecosystems and Environment Journal 9: 353-372.
Rahimi-Zadeh, M., Rezadost, S., Mehraban, A., and Marjani, A. 2008. Analysis of energy in agricultural ecosystems and strategies to increase energy efficiency. The 6th National Proceeding of Energy. 12-13 June. Tehran, Iran. (In Persian with English Summary)
Rajabi, M.H., Soltani, A. Vhidnia, B, Zeinal, E. and Soltani, E. 2012. Evaluation of fuel Consumption in wheat fields in Gorgan. Environmental Sciences 9 (2). 143-164. (in Persian)
Razzaqi, M.H., khad-Alhoseini, N., and Jovkar, L. 2008. Study the effect of tillage reducing on energy consumption forage corn production. 2nd National Congress of Ecological Agriculture. (In Persian with English abstract)
Reicosky, D.C., Dugas, W.A., and Torbert, H.A. 1997. Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Research. 41:105–108.
Safa, M., and Tabatabaeefar, A. 2002. Energy consumption in wheat production in irrigated and dry land farming. Proceeding of international Agriculture Engineering, Wuxi, China, Now 28-30.
Shrestha, D.S. 1998. Energy use efficiency indicator for agriculture, Available at: http://www.usaskca/agriculture/caedac/ PDF/mcrae. PDF.
Singh, G., Singh, S., and Singh, J. 2007. Optimization of energy inputs for wheat crop in Punjab. Energy Conversation and Management 45: 453-65.
Snedecor G.W., and Cochran, W.G. 1989. Statistical methods. Iowa State University Press.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E., 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agricultural Ecosystem Environment 133 (3–4): 247-266.
Soltani, A., Bazrgar, A.B., Koochaki, A.R., Zeinali, E., Ghaemi, A.R., and Hajarpoor, A. 2015. Life Cycle Assessment (LCA) of sugar beet production in various production systems in Khorasan. 8 (1): 43-62. Journal of crop production. (In Persian with English Summary)
Taheri-Rad, A. R., Nikkhah, A., Khojastehpour, M., and Nourozieh, S. 2015. Assessing GHG emissions, and energy and economic analysis of cotton production in the Golestan province. Journal of Agricultural Machinery 5 (2): 428-445.
Teimouri, I., Salarvandian, F., and Ziari. K. 2014. The ecological footprint of carbon dioxide from fossil fuels in Shiraz. Journal of Geographical Research 59 (1): 193-204.
Valadiani, A., Hasanzadeh-Ghourtapeh, A., and Valadiani, R. 2005. Study of energy balance in dryland wheat seed cultivars in seed reproduction fields and its effect on the environment in East Azerbaijan province. Agriculture Sciences Journal 15: 1-12. (In Persian with English Summary)
Yosefi, M., Mahdavi-Damghani, A., Khosh-bakht, K., and Veisy, H. 2011. Renewable and non-Renewable energy use pattern of rainfed wheat agroecosystems in Iran. Wold Applied Sciences journal 13 (6): 1389-1403.