بررسی انتشار گازهای گلخانه‏ای و پتانسیل گرمایش جهانی ناشی از مصرف نهاده‏های شیمیایی در زراعت محصولات مهم استان کرمان: - غلات

نوع مقاله : علمی - پژوهشی

نویسندگان

کرمان

چکیده

در این تحقیق، میزان انتشار گازهای گلخانه‏ای و پتانسیل گرمایش جهانی ناشی از مصرف نهاده‏های شیمیایی در زراعت گندم (Triticum aestivum L.)، جو (Hordeum vulgare L.) و ذرت (Zea mays L.) برای استان کرمان در سال زراعی 92-1391 مورد بررسی قرار گرفت. اطلاعات مربوط به سطح زیر کشت محصولات مذکوردر شهرستان‏های مختلف استان کرمان از طریق آمار سازمان جهاد کشاورزی استان استخراج گردید. میزان کاربرد نهاده‏های شیمیایی شامل نیتروژن، فسفر، پتاسیم، علف‏کش، حشره‏کش و قارچ‏کش توسط پرسشنامه‏ها و مصاحبه حضوریاز شهرستان‏های مختلف استان جمع‌آوری شد. انتشار گازهای گلخانه‏ای دی‏اکسیدکربن (CO2)، اکسید‏نیتروژن (N2O) و متان (CH4)و همچنین پتانسیل گرمایش جهانی در محصولات مورد بررسی بر اساسمیزان مصرف نهاده، ضرایب انتشارو سطح زیر کشت محاسبه شد. نتایج نشان داد که در هر سه محصول مورد بررسی میزان انتشار گازهای گلخانه‏ای ناشی از مصرف کود نیتروژن بیشتر از دیگر نهاده‏ها بود. میزان انتشار CO2، N2O و CH4 در گندم بیشتر از ذرت و آن هم بیشتر از جو بود. در بین شهرستان‏های مورد بررسی، جیرفت و رفسنجان به ترتیب بیشترین و کمترین میزان انتشار را دارا بودند. میزان سالیانهپتانسیل گرمایش جهانی در مناطق و غلات مورد بررسی مطابق با روند انتشار گازهای گلخانه‏ای بود. در حالی‌که، میزان این شاخص در هکتار، در شهرستان‏های جیرفت و سیرجان از بیشترین و کمترین میزان برخوردار بود. میزان پتانسیل گرمایش جهانی بر حسب معادل CO2 در ذرت (504 تن در هکتار) بالاتر از گندم (404 تن در هکتار) و جو (431 تن در هکتار) بود. در بین نهاده‏های مورد بررسی، کود نیتروژن حدود 87 درصد پتانسیل گرمایش جهانی را باعث شد.

کلیدواژه‌ها


عنوان مقاله [English]

Greenhouse Gases Emission and Global Warming Potential as Affected by Chemicals Inputs for Main Cultivated Crops in Kerman Province: - Cereal

نویسندگان [English]

  • Rooholla Moradi
  • Nasibe Pourghasemian
Assistance Professor, Department of Plant Productions, Agricultural Faculty of Bardsir, Shahid Bahonar University of Kerman, Iran
چکیده [English]

Introduction
Agriculture is a major consumer of chemical resources. Increasing use of the inputs in agriculture has led to numerous environmental problems such as high consumption of nonrenewable energy resources, loss of biodiversity and pollution of the aquatic environment (Moradi et al., 2014). This environmental change will have the serious impacts on different growth and development processes of crops. The latest report of the Intergovernmental Panel on Climate Change (IPCC) states that future emissions of greenhouse gases (GHGs) will continue to increase and cause to climatic change (IPCC, 2007). This condition is also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Consistent with the development of agricultural production systems and move towards modernization in this sector increased dependence of the chemical resource (Salinger, 2005). There is even less data on CO2, N2O, and CH4 gas emission analysis as affected by cultivating various crops in Kerman province. Therefore, this study was conducted to assess the greenhouse gases (GHGs) emission and global warming potential (GWP) caused by chemical inputs (various chemical fertilizers and pesticides) for cultivating wheat, barley and maize in some regions of Kerman province at 2011-2012 growth season.

Materials and methods
The study was conducted in Kerman province of Iran. Information about planting area of potato, onion and watermelon in various regions of Kerman was collected. Data were collected from potato, onion and watermelon growers by using a face to face questionnaire in 2014 for different regions of Kerman. In addition to the data obtained by surveys, previous studies of related organization (Agricultural Ministry of Kerman) were also utilized during the study. The application rates of the chemical inputs were collected by using a face-to-face questionnaire in various regions (Bardsir, Bam, Jiroft, Kerman, Ravar, Rafsanjan and Sirjan) of Kerman province. The amounts of GHG emissions from chemical inputs in the studied crops were calculated by using CO2, N2O and CH4 emissions coefficient of chemical inputs. Each greenhouse gas, i.e. CO2, CH4 and N2O has a GWP, which is the warming influence relative to that of CO2. The emission was measured in terms of CO2. The GWP coefficient based on CO2 is shown in Table 1.

Results and discussion
The results showed that N and P fertilizers had the highest application share of chemical inputs. Maize had the significant different with wheat and barley based on N application per hectare. P application for maize and wheat was about 58 and 28% more than barley.
In all conditions, CO2 was obtained extremely higher emission rather than N2O and CH4. This issue was due to the highest coefficient emission of CO2 compared to N2O and CH4. Due to higher usage value and coefficient emission of N fertilizer, GHGs emission for N fertilizer was higher than the other inputs in all three crops and all the regions. The pesticide inputs had lower GHGs emission in comparison with chemical fertilizers. The highest emission of CO2, N2O and CH4 was gained for wheat fallowed by maize, and barely had the lowest value. Jiroft and Rafsanjan were obtained the highest and lowest GHGs emission through the studied regions, respectively. Higher GHGs emission in Jiroft was due to the higher planting area compared with the others regions. Annual GWP in studied regions and cereals had the same trend with GHGs emission, whereas, the highest and lowest values of GWP per hectare were related to Jiroft and Sirjan, respectively. The GWP in maize (504 t. ha-1) was higher than wheat (404 ton.ha-1) and barely (431 ton.ha-1). Among the chemical inputs, N fertilizer brought about 87% of GWP.

Conclusion
Generally, the results showed that nitrogen fertilizer is the most important factor in greenhouse gas emissions in cereal. Corn cultivation has more share than wheat and barley in the global warming potential. According to this research, the following strategies can be considered for reducing greenhouse gas emissions:
Improvement of the nitrogen use efficiency
Use of crop rotations
Use of organic (manure, compost, green manure, plant debris) and bio (nitrogen fixation microcrystalline) resources than chemical fertilizers
Use of ecological and biological methods for pest and weed management
Use of intercropping systems

کلیدواژه‌ها [English]

  • Climate change
  • Coefficient emission
  • Pesticide
  • Urea
  • wheat
Dalal, R.C., Wang, W., Robertson, P., and Parton, W.J. 2003. Nitrous oxide emission fromAustralian agriculture lands and mitigation options: a review. Australian Journal of Soil Research 41: 165–195.
Datta, A., Santra, S.C., and Adhya, T.K. 2013. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India. Atmospheric Environment 66:123-130.
Guillou, C.L., Angers, D.A., Leterme, P., and Menasseri-Aubry, S. 2011. Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry 43: 1955-1960.
IPCC. 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability(Eds J.J. McCarthy, O.F. Canziani, N.A. Leary, D.J. Dokken and K.S. White) 1032 pp. Cambridge University Press, Cambridge, UK.
IPCC. 2007. Summary for Policy Makers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge University Press, Cambridge, UK.
Kahrl, F., Li, Y., Su, Y., Tennigkeit, T., and Wilkes, A. 2010.Greenhouse gas emissions from nitrogen fertilizer use in China.Environmental Science and Policy 13: 688-694.
Kerman Organization of Agriculture.2014. http://agrijahad.kr.ir/index.php?lang=en. (Accessed August 2014)
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., and Movahedi, M. 2013. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333-338.
Lal, R. 2004. Carbon emission from farm operations. Environment International 30(7): 981-990.
Lichtfouse, E. 2009.Climate Change, Intercropping, Pest Control and Beneficial Microorganisms.Volume 2.Springer524 p.
MAJ (Ministry of Agriculture of the IR of Iran). Planning and Economics Department, Statistics Bank of Iranian Agriculture; http://www.maj.ir; 2012 (Accessed August 2014).
Maraseni, T.N., and Cockfield, G. 2011. Does the adoption of zero tillage reduce greenhouse gas emissions?An assessment for the grains industry in Australia. Agricultural Systems 104: 451-458.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S. 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews30:724–733.
Moradi, R., Koocheki, A., and Nassiri Mahallati, M. 2014. Adaptation of maize to climate change impacts in Iran. Mitigation and Adaptation Strategies for Global Change 19: 1223-1238.
Nikkhah A., Emadi, B., Shabanian, F., and Hamzeh Kalkonari, H. 2014.Evaluation of energy sensitivity and greenhouse gas Production of tea production in Guilan province. Journal of Agroecology 6(3): 622-633. (In Persian with English Summary)
Ozkan, B., and Akcaoz, H. 2002. Impacts of climate factors on yields for selected crops in Turkey. Mitigation and Adaptation Strategy for Global Change 7: 367-380.
Rajabi, M.H., Soltani, A., Zeinali, E., and Soltani, E. 2012. Evaluation of greenhouse gas emission and global warming potential in wheat production in Gorgan, Iran.Electronic Journal of Crop Production 5(3): 23-44.
Robertson, G.P., Paul, E.A. and Harwood, R.R. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289: 1922-1935.
Rodhe, H. 1990. A comparison of the contribution of various gases to the greenhouse. Science 248: 1217-1219.
Rosenzweig, C., and Tubiello, F.N. 2007. Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategy for Global Change 12: 855-873.
Salinger, M.J. 2005. Climate variability and change: past, present and future-an overview. Climate Change 70(1-2): 9-29.
Snedecor, G.W., and Cochran, W.G. 1976. Statistical Methods, Seventh Ed.The Iowa State University Press, Ames, Iowa, USA.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133: 247-266.
Thelen, K.D., Fronning, B.E., Kravchenko, A., Min, D.H., and Robertson, G.P. 2010. Integrating livestockmanure with a corn–soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential. Biomass Bioenerg 34: 960-966.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agriculture systems 85: 101-119.
Verge, X.P.C., Kimpe, C.D., and Desjardins, R.L. 2007. Agricultural production, greenhouse gas emissions and mitigation potential.Agricultural and Forest Meteorology142: 255-269.
Wolf, J., Adger, W., Lorenzoni, I., Abrahamson, V., and Raine, R. 2010 Social capital, individual responses to heat waves and climate change adaptation: An empirical study of two UK cities. Global Environmental Change 20: 44-52.
Yao, Z., Zheng, X., Xie, B., Mei, B., Wang, R., Butterbach-Bahl, K., Zhu, J., and Yin, R. 2009. Tillage and crop residue management significantly affects N-trace gas emissionsduring the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry 41: 2131–2140.
Yousefi, M., Khorramivafa, M., and Mondani, F. 2014a. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment 92: 501-505.
Yousefi, M., Mahdavi Damghani, A., and Khoramivafa, M. 2014b. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment 493: 330-335.
Zhang, Y., Li, Z., Feng, J., Zhang, X., Jiang, Y., Mingqian, J.C., Deng, A., and Zhang, W. 2014. Differences in CH4 and N2O emissions between rice nurseries in Chinese major rice cropping areas. Atmospheric Environment 96: 220-228.