اثرات تغییر اقلیم بر نواحی در معرض تهاجم علف‌هرز کشیده‌برگ مهاجم جودره (Hordeum spontaneum K.Koch) در ایران و جهان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 مؤسسه تحقیقات گیاه- پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

در این تحقیق با استفاده از شاخص شدت حضور علف‌های هرز، مناطق اصلی آلوده به علف‌هرز جودره (Hordeum spontaneum K.Koch) در استان لرستان شامل شهرستان‌های خرم‌آباد (مناطق ایمان‌آباد و ریمله)، دورود، کوهدشت و الشتر سلسله به عنوان اقلیم مطلوب برای حضور این گونه علف‌هرز انتخاب شدند و با استفاده از برنامه کلیمکس1 تشابه اقلیمی مناطق مختلف جهان با ناحیه مورد نظر به عنوان معیاری از قابلیت تهاجم‌پذیری آن مناطق در شرایط موجود و تحت سناریوهای تغییر اقلیم ارزیابی شد. تجزیه خوشه‌ای نشان داد استان‌های کرمانشاه، البرز، همدان، کردستان، مرکزی، قزوین و چهارمحال و بختیاری با شاخص مشابهت اقلیمی بیشتر از 81/0 مستعدترین اقلیم را برای استقرار علف‌هرز جودره در شرایط دیم داشتند. در صورت تغییر اقلیم، شرایط آب و هوایی استان‌های زنجان، همدان، اردبیل، آذربایجان غربی، آذربایجان شرقی، کردستان، چهارمحال‌وبختیاری و مرکزی برای استقرار این علف‌هرز در مقایسه با اقلیم جاری مساعدتر و شرایط سایر استان‌ها نامساعدتر می‌شود. در شرایط تغییر اقلیم، شرایط آب و هوایی استان لرستان به میزان 5/8 درصد برای استقرار علف‌هرز جودره نامساعد خواهد شد. اسلام‌آباد غرب، بروجرد، ایوان، تویسرکان، کنگاور، جوانرود، کرمانشاه، کامیاران، اردل، سیلاخور، سرارود، سنندج، شمیران تهران، روانسر، رومشکان، نهاوند، ایلام، فارسان، تازه آباد، نورآباد دلفان، مهاباد، ازنا، سنقر، هرسین، سیسخت، خرم‌آباد، سپیدان، زرقان، معلم کلایه، سرابله، بوکان، قزوین، شاهین دز، بانه، بیله‌سوار، شازند، تخت جمشید، اراک، خمین، هشتگرد، سقز، اشنویه، سامان، خنداب، شیراز، شهرکرد و ملایر با داشتن شاخص مشابهت اقلیمی بیشتر از 9/0 آسیب‌پذیرترین شهرها در برابر تهاجم علف‌هرز جودره بودند. در شرایط موجود، کشورهای اسپانیا، ایالات متحده آمریکا، الجزایر، یونان، سوریه، ترکیه، ایتالیا، استرالیا، ازبکستان، تونس، پاکستان، عراق، مراکش، شیلی، افغانستان، بلغارستان، مقدونیه، پرتغال، آرژانتین، ترکمنستان، لیبی، رومانی، اردن، آفریقای جنوبی، فرانسه، ارمنستان، اکراین، فلسطین اشغالی و چین حداقل یک منطقه با مشابهت اقلیمی بیشتر از 8/0 با ناحیه آلوده به علف‌هرز جودره در استان لرستان داشتند. بر اساس سناریوی تغییر اقلیم انگلستان برای سال 2080 میلادی، شرایط اقلیمی کشورهای کره شمالی، سوئیس، کره جنوبی، مجارستان، اتریش، بوسنی و هرزگوین، مغولستان، لوکزامبورگ، جمهوری چک، آلمان، کانادا، لهستان، رومانی، یوگسلاوی، جورجیای جنوبی، بلژیک، روسیه، بلغارستان، هلند، اوکراین، سوئد، قزاقستان، فنلاند، بلاروس، انگلستان، نروژ، فرانسه، دانمارک و ایرلند برای تهاجم علف‌هرز جودره در مقایسه با شرایط آب‌وهوایی موجود به میزان 30-10 درصد افزایش می‌یابد. براساس این تحقیق در شرایط اقلیمی موجود و در صورت تغییر اقلیم قاره اروپا بهترین اقلیم برای تهاجم علف‌هرز جودره و قاره آمریکای جنوبی در شرایط جاری و قاره آفریقا در صورت تغییر اقلیم نامساعدترین قاره برای تهاجم این علف‌هرز بودند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Climate Change on Invasion Potential of Wild Barley (Hordeum spontaneum K.Koch) in Iran and the World

نویسندگان [English]

  • Seyed Karim Mousavi 1
  • Ali Ghanbari 1
  • Reza Ghorbani 1
  • Mohammad Ali Baghestani 2
1 Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Introduction
Invasive species present a major threat to biodiversity, which may be boosted due to the climate change effects, particularly if desired weather conditions allow weed to spread to new areas. Identification of areas climatically suitable to weed establishment can offer great opportunities for stopping or decelerating invasion process. Bioclimatic and species distribution models that relate geographic data of a species to environmental variables have become an important modeling tool in invasion ecology. Although the predicted area by climex as suitable environmental for a species does not mean that, it can necessarily establish there, it does suggest a beneficial knowledge about detecting areas with invasion potential.
Taking advantage of climate match index to predict the potential invasion of wild barley grass weed in Iran and other world regions under current climate and different climate change scenarios are the objectives of current research .Identifying suitable environmental areas for invasive species provides an opportunity to prevent or slow down the invasion process

Materials and methods
Based on the presence intensity index of weeds, the climate of infestation hotspots in the Lorestan province, including Khorramabad (Aymanabad and Rimmelleh region), Dorud, Kuhdasht and Aleshtar, were defined as the favorable climate for wild barley. Wild barley-infected foci climate in Lorestan province was considered as a desirable climate for this weed. Climatic similarity of different regions of the world with the intended zone was evaluated as a criterion of invasion susceptibility of those regions in the current conditions and under climate change scenarios by using Climex model.

Results and Discussion
Results showed that Kermanshah, Tehran, Hamedan, Kurdistan, Markazi, Qazvin and Chaharmahal and Bakhtiari with composite match Index greater than 0.81 in compare to infected area in Lorestan, were the most prone province of Iran for wild barley weed establishment. under climate change scenarios, Zanjan, Hamedan, Ardebil, West Azarbaijan, East Azarbaijan, Kurdistan, Chharmhal and bakhtyary, and Markazi climate conditions will be more favorable in comparison with the current situation for establishment of wild barley weed, and the climate conditions in other provinces will be less favorable. Under climate change scenarios condition, the climate conditions of Lorestan will be 8.5% unfavorable to establish wild barley. Islamabad gharb, Borujerd, Ivan, Tuyserkan, Kangavar, peers, Kermanshah, Kamyaran, Ardal, Silakhor, Sararood, Sanandaj, Shamiran Tehran, Rawansar, Rvmshkan, Skinheads, Ilam, Farsan, Tazehabad, Nourabad Delfan, Mahabad, Azna, Songhor, Harsin, Sisakht, Khorramabad, Sepidan, Zarghan, Moalem Kalayeh, Sarableh, Bukan, Qazvin, Shahin Dez, Bane, Bilasuvar, Shazand, Takhte jamshid, Arak, Khomeini, Hashtgerd, Saghez, Oshnavieh, Saman, Khondab, Shiraz, Shahr kord, and Malayer with a composite match index of greater than 0.9 were considered the most vulnerable regions against the wild barley invasion. In the current climate situation, Spain, United States of America, Algeria, Greece, Syria, Turkey, Italy, Australia, Uzbekistan, Tunisia, Pakistan, Iraq, Morocco, Chile, Afghanistan, Bulgaria, Macedonia, Portugal, Argentina, Turkmenistan, Libya, Romania, Jordan, South Africa, France, Armenia, Ukraine, Palestine and China have at least one region with composite match index greater than 0.8 for wild barley weed infested region in Lorestan province. Climate conditions of North Korea, Switzerland, South Korea, Hungary, Austria, Bosnia and Herzegovina, Mongolia, Luxembourg, Czech Republic, Germany, Canada, Poland, Romania, Yugoslavia, South Georgia, Belgium, Russia, Bulgaria, Netherlands, Ukraine, Sweden, Kazakhstan, Finland, Belarus, England, Norway, France, Denmark and Ireland become 10-30% more vulnerable to wild barley invasion, according to the UK scenario for the year 2080, climate change in compared with current weather condition.

Conclusions
Europe was the most talented continent for invasion of wild barley, and South America and the Africa continents in the current and future climates respectively had the minimum risk for establishment of wild barley.

کلیدواژه‌ها [English]

  • Climex Model
  • Composite Match Index
  • Weed Distribution
Beaumont, L.J., Hughes, L., and Poulsen, M. 2005. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species current and future distributions. Ecological Modelling 186: 250-269.
Binggeli, P. 1996. A taxonomic, biogeographical and ecological overview of invasive woody plants. Journal of Vegetation Science 7: 121-124.
Bullock, J.M., Edwards, R.J., Carey, P.D., and Rose, R.J. 2000. Geographical separation of two Ulex species at three spatial scales: does competition limit species’ ranges? Ecography 23: 257-271.
Colwell, R.K., Brehm, G., Cardelus, C.L., Gilman, A.C., and Longino, J.T. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258-261.
Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B., and Wood, S. 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783-786.
Ervin, G.N., and Holly, D.C. 2011. Examining local transferability of predictive species distribution models for invasive plants: an example with cogongrass (Imperata cylindrica). Invasive Plant Science and Management 4: 390-401
Follak, S., and Strauss G. 2010. Potential distribution and management of the invasive weed Solanum carolinense in Central Europe. Weed Research 50: 544-552.
Global Biodiversity Information Facility. 2016. GBIF Backbone Taxonomy. Global Biodiversity Information Facility. http://www.gbif.org. (13th March 2016) GBIF Occurrence Download http://doi.org/10.15468/dl.8eghnr
Grinnell, J. 1917. The niche-relationships of the California Thrasher. The Auk, 34: 427-433.
Grinnell, J. 1924. Geography and evolution. Ecology 5: 225-229.
Guisan A., and Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993-1009.
Guisan A., and Zimmermann N.E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186.
IPCC. 2013. Summary for Policymakers. In: Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Ed.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, USA.
Keane R.M., and Crawley M.J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164-170.
Kriticos, D.J., and Randall, R.P. 2001. A Comparison of Systems to Analyze Potential Weed Distributions. In: Groves, R.H., Panetta, F.D., and Virtue, J.G. (Eds.), Weed Risk Assessment. CSIRO Publishing.
Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.W., and Maywald, G.F. 2003. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp indica in Australia. Journal of Applied Ecology 40: 111-124.
Kriticos, D.J., Watt, M.S., Potter, K.J.B., Manning, L.K., Alexander, N.S., and Tallent-Halsell, N. 2011. Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii. Weed Research 51: 85-96.
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. and Scott, J.K. 2012. CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3: 53-64.
Liu, X., Guo, Z., Ke, Z., Wang, S., and Li, Y. 2011. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PLoS One 6(3): e18429.
Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M., and Bazzaz, F.A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689-710.
Mousavi, S.K. 2015. Biology and ecology of wild wheat (Triticum boeoticum) and wild barely (Hordeum spontaneum) and their potential distribution under current and future climates. PhD Dissertation, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R. A., Rogner, H. H., and Victor, N. 2000. Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press.
Pearson, R.G., and Dawson, T.P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371.
Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology 78: 419-433.
Soberon, J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115-1123.
Sutherst, R.W. 2003. Prediction of species geographical ranges. Journal of Biogeography 30: 805–816.
Sutherst, R.W., Maywald, G.F., and Kriticos, D.J. 2007. CLIMEX Version 3: User’s Guide. Hearne Scientific Software Pty Ltd., Melbourne, Australia.
Taylor, S., and Kumar, L. 2013. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: A case study of Lantana camara L. in Queensland, Australia. Journal of Environmental Management 114: 414-422.
Taylor, S., Kumar, L., Reid, N., and Kriticos, D.J. 2012. Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS One 7(4): e35565.
Webber, B.L., Yates, C.J., Le Maitre, D.C., Scott, J.K., and Kriticos, D.J. 2011 Modeling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Diversity and Distributions 17: 978-1000.
Zhu, G., Bu, W., Gao, Y., and Liu, G. 2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS One 7(2): e31246.
Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B., and Svenning, J.C. 2010. New trends in species distribution modelling. Ecography 33: 985-989.
CAPTCHA Image