Barker-Reid, F., Gates, W.P., Wilson, K., Baigent, R., Galbally, I.E., Meyer, C.P., Weeks, I.A., and Eckard, R.J. 2005. Soil nitrous oxide emission from rainfed wheat in SE Australia. In: A. van Amsted (Ed.). Non-CO2 greenhouse gases (NCGG-4). Utrecht, the Netherlands: Mill Press.
Barton, L., Kiese, R., Gatter, D., Butterbach-bahl, K., Buck, R., Hinz, C., and Murphy, D. 2008. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology 14: 177-192.
Biswas, W.K., Barton, L., and Carter, D. 2008. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water Environmental Journal 22: 206-216.
Bouwman, A.F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: A.F. Bouwman (Eds.), Soils and the greenhouse effect (pp. 61-127). Chichester: Wiley.
Braschkat, J., Patyk, A., Quirin, M., and Reinhardt, G.A. 2003. Life cycle assessment of bread production–a comparison of eight different scenarios. In: Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector, October 6-8, Bygholm, Denmark. p. 9-16.
Brentrup, F., Kusters, J., Kuhlmann, H., and Lammel, J. 2001. Application of the life cycle assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilisers. European Journal of Agronomy 14: 221-233.
Brentrup, F., Kusters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impacts assessment of agricultural production systems using the life cycle assessment methodology, I. Theorical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247-264.
Brentrup, F., Kusters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impacts assessment of agricultural production systems using the life cycle assessment (LCA) methodology, II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20: 265-279.
Chabra, D., Kashani Nezhad, M., and Rafiee, S.H. 2006. Comparison of the contents of waste in different drying rice. Proceedings of the First National Conference on Rice. 5-4 December, Amol. (In Persian)
Charles, R., Jolliet, O., Gillard, G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat production using life cycle assessment. Agriculture, Ecosystems and Environment 113: 216-225.
Cronbach, L.J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16(3): 297-334.
Crutzen, P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: C.C. Delwiche (Ed.), Denitrification, nitrification, and atmospheric nitrous oxide (17-44 pp.). New York: Wiley.
Dastan, S., Soltani, A., Noor Mohammadi, G.H., and Madani, H. 2013. Global warming potential of carbon dioxide emissions and energy consumption in the paddy planting. Journal of Agricultural Ecology 6(4): 823-835. (In Persian with English Summary)
Esmaielpour, B., Khorramdel, S., and Amin Ghafori, A. 2015. Study of Environmental impacts for potato Agroecosystems of Iran based on nitrogen fertilizer by using Life Cycle Assessment (LCA) methodology. Electronic Journal of Crop Production 8(3): 199-224. (In Persian with English Summary)
Fageria, N.K. 2009. The use of nutrients in plants. Taylor & Francis Group, CRC Press 430 pp.
Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., and Bannayan, M. 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability 14: 979-992.
FAO. 2003. World Agriculture: Towards 2015/2030. An FAO Perspective. http://www.fao.org
Finkbeiner, M., Inaba, A., Tan, R.B.H., Christiansen, K., and Klüppel, H.J. 2006. The new international standards for life cycle assessment: ISO14040 and ISO14044. International Journal of Life Cycle Assessment 11(2): 80-85.
Giampietro, M., Cerretelli, G., and Pimentel, D. 1992. Energy analysis of agricultural ecosystem management: human return and sustainability. Agriculture, Ecosystems and Environment 38: 219-244.
Guinee, J.B. 1996. Data for the Normalization Step within Life Cycle Assessment of Products. CML Paper No. 14 (Revised version). CML (Centre of Environmental Science), Leiden.
Guinee, J.B. 2001. Life cycle assessment: an operational guide to the ISO standards. Centre of Environmental Science, Leiden University, Leiden.
Haas, G., Wetterich, F., and Kopke, U. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment 83: 43-53.
Hayashi, K. 2005. Practical implications of functional units in life cycle assessment for horticulture: Intensiveness and environmental impacts. LCM2005: Innovation by Life Cycle Management: Barcelona, Spain 1: 368-371
Hospido, A., Moreira, M.T., and Feijoo, G. 2003. Simplified life cycle assessment of Galician milk production. International Dairy Journal 13(10): 783-796.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Cleaner Production 18: 336-345.
ISO (International Organization for Standardization). 2006. ISO 14040: 2006 (E) Environmental Management – Life Cycle Assessment– Principles and Framework.
Khorramdel, S., Ghorbani, R., and Amin Ghafori, A. 2015. Comparison of environmental impacts for dryland and irrigated barley Agroecosystems of Iran by using Life Cycle Assessment (LCA) methodology. Journal of Plant Production 22(1): 243-364. (In Persian with English Summary)
Khorramdel, S., Rezvani Moghaddam, P., and Amin Ghafori, A. 2013. Evaluation of environmental impacts for wheat Agroecosystems of Iran by using Life Cycle Assessment methodology. Cereal Research 4(1): 27-44. (In Persian with English Summary)
Khoshnevisan, B., Rafiei, S., Omid, M., Keyhani, A., and Movahedi, M. 2013. Assessing of energy indices and environmental impacts of potato production (Case study: Fereydoonshahr region, Isfahan province). Iranian Journal of Biosystems and Engineering 44(1): 57-66. (In Persian with English Summary)
Lindeijer, E. 1996. Normalisation and valuation. In: Udo de Haes, H.A. (Eds.), Towards a Methodology for Life Cycle Impact Assessment, SETAC, Brussels.
Mansoori, H., Rezvani Moghaddam, P., and Moradi, R. 2012. Energy budget and economic analysis in conventional and organic rice production systems and organic scenarios in the transition period in Iran. Frontiers in Energy 6(4): 341-350.
Marini, M., Senhaji, F., and Pimentel, D. 2002. Energy analysis of sugar beet production under traditional and intensive farming systems and impact on sustainable agriculture in Morocco. Journal of Sustainable Agriculture 20: 5-27.
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval, S.H., and Hermansen, J.E. 2013. Potential greenhouse gas emission reductions in soybean farming: a combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production 54: 89-100.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A.R., Dalgaard, T., Knudsen, M.T., Nguyen, T.L.T., Borek, R., and Hermanse, J.E. 2015. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production 106: 521-532.
Mollafilabi, A., Khorramdel, S., Amin Ghafori, A., and Hosseini, M. 2014. Evaluation of environmental impacts for saffron agroecosystems of Khorasan by using Life Cycle Assessment (LCA). Journal of Saffron 2(2): 165-179. (In Persian with English Summary)
Monti, A., Fazio, S., and Venturi, G. 2009. Cradle-to-farm gate life cycle assessment in perennial energy crops. Europ. Journal of Agronomy 31: 77-84.
Nikkhah, A., Taheri-Rad, A.R., Khojastehpour, M., Emadi, B., and Khorramdel, S. 2015. Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production 92: 84-90.
Nemecek, T., Dubois, D., Huguenin-Elie, O., and Gaillard, G. 2011. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agricultural Systems 104: 217-232.
Nie, S.W., Gao, W.S., Chen, Y.Q., Sui, P., and Eneji, A.E. 2010. Use of life cycle assessment methodology for determining phytoremediation potentials of maize-based cropping systems in fields with nitrogen fertilizer over-dose. Journal of Cleaner Production 18: 1530-1534.
Payraudeau, S., and van der Werf, H.M.G. 2005. Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems and Environment 107: 1-19.
Peyman, M., Ruhi, R., and Alizadeh, R. 2005. Set in the traditional and semi-mechanized to produce energy. Journal of Agricultural Engineering 6(22): 67- 80. (In Persian with English Summary)
Riemersma, S., Little, J., Ontkean, G., and Moskal-Hebert, T. 2006. Phosphorus Sources and Sinks in Watersheds: A Review. Alberta Soil Phosphorus Limits Project.
Roy, P., Nei, D., Orikasa, T., Xu, Q., and Okadome, H. 2009. A review of cycle assessment (LCA) on some food products. Journal of Food Engineering 90: 1-10.
Russo, G., and De Lucia, B. 2008. Environmental evaluation by means of LCA regarding the ornamental nursery production in rose and sowbread greenhouse cultivation. Acta Horticulturae 801: 1597-1604.
Schröder, J.J., Aarts, H.F.M., ten Berge, H.F.M., van Keulen, H., and Neeteson, J.J. 2003. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy 20: 33-44.
Sheng-Wei, N., Wang-Sheng, G., Yuan-Quan, C., and Peng-Sui, A. 2010. Use of life cycle assessment methodology for determining phytoremediation potentials of maize-based cropping systems in fields with nitrogen fertilizer. Journal of Cleaner Production 18: 1530-1534.
Snedecor, G.W., and Cochran, W.G. 1980. Statistical Methods. Iowa State University Press.
Whalen, J.K., and Chang, C. 2002. Phosphorus sorption capacities of calcareous soils receiving cattle manure applications for 25 years. Communication in Soil Science and Plant Analysis 33: 1011-1026.
Zolfi Bavariani, M., and Nouruzi, M. 2010. Effect of organic matter on residual phosphorus recovering in a calcareous soil. JWSS- Isfahan University of Technology 14(52): 87-98. (In Persian with English Summary)
Send comment about this article