Abbasi, M. 2016. Management of Agriculture Golestan Province. http://www7.irna.ir/fa/News/81661406. (Accessed 8 Oct 2016). (In Persian)
Amiri, B. 2015. Head of Department of Crop Sciences, Agriculture and Natural Resources, University of Mazandaran. http://www.irna.ir/fa/News/81623112. (Accessed 27 Jun 2016). (In Persian)
Ashworth, A.J., Taylor, A.M., Reed, D.L., Allen, F.L., Keyser, P.D., and Tyler, D.D. 2015. Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems. Journal of Cleaner Production 87: 227-234.
Bacenetti, J., Pessina, D., and Fiala, M. 2016. Environmental assessment of different harvesting solutions for short rotation coppice plantations. Science of the Total Environment 541: 210-217.
Blengini, G.A., and Busto, M. 2009. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management 90: 1512-1522.
Björklund, A. 2012. Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden. Environmental Impact Assessment Review 32: 82-87.
Bojaca, C.R., Wyckhuys, K.A., and Schrevens, E. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69: 26-33.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247-264.
Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H. 2002. Impact assessment of abiotic resource consumption conceptual considerations. The International Journal of Life Cycle Assessment 7: 301-307.
Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment 5: 349-357.
Carlsson-Kanyama, A., Ekström, M.P., and Shanahan, H. 2003. Food and life cycle energy inputs: consequences of diet and ways to increase efficiency. Ecological Economics 44: 293-307.
Dastan, S., Soltani, A., Mohammadi, G., and Maddani, H. 2013. Global warming potential of carbon dioxide emissions and energy consumption in the paddy planting. Journal of Agroecology 6(4): 823-835. (In Persian with English Summary)
EEA. 2004. http://glossary.eea.eu.int/EEAGlossary/N/nonmethane_ volatile_organic_compound [WWW, visited 13 Feb. 2004].
EMEP, E. 2013. EEA air pollutant emission inventory guidebook 2013. European Environment Agency, Copenhagen.
Erdal, G., Esengün, K., Erdal, H., and Gündüz, O. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32: 35-41.
Esmaeilpur, B., Khorramdel, S., and Amin Ghafori, A. 2014. Analysing environmental effects of potato production systems based on of nitrogen fertilizer using life cycle assessment. Journal of Crop Production 8: 199-224. (In Persian with English Summary)
FAO, 2003. World Agriculture: Towards 2015/2030. An FAO Perspective. http://www.fao.org.
Fiala, M., and Bacenetti, J. 2012. Model for the economic, energy and environmental evaluation in biomass productions. Journal of Agricultural Engineering 43: 5.
Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., and Klüppel, H.J. 2006. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. The International Journal of Life Cycle Assessment 11: 80-85.
Fusi, A., Castellani, V., Bacenetti, J., Cocetta, G., Fiala, M., and Guidetti, R. 2016. The environmental impact of the production of fresh cut salad: a case study in Italy. The International Journal of Life Cycle Assessment 21: 162-175.
Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, P., and Rieradevall, J. 2007. Life cycle assessment of a Brassica carinata bioenergy Cropping system in southern Europe. Biomass and Bioenergy 31: 543-555.
Ghadiryanfar, M., Rosentrater, K.A., Keyhani, A., and Omid, M. 2016. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews 54: 473-481.
Ghorbani, M., Heidari Kamalabadi, R., and Karimi, H. 2010. Assess citizen satisfaction Mashhad urban bus network services. Journal of Mashhad Study 3: 25-47. (In Persian with English Summary)
Guinee, J. 2001. Handbook on life cycle assessment-operational guide to the ISO standards. The International Journal of Life Cycle Assessment 6: 255-255.
Hatirli, S.A., Ozkan, B., and Fert, C. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy 31: 427-438.
Hokazono, S., and Hayashi, K. 2012. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. Journal of Cleaner Production 28: 101-112.
Hormozi, M.A., Asoodar, M.A., and Abdeshahi, A. 2012. Impact of mechanization on technical efficiency: A case study of rice farmers in Iran. Procedia Economics and Finance 1: 176-185.
Hasler, K., Bröring, S., Omta, S.W.F., and Olfs, H.W. 2015. Life cycle assessment (LCA) of different fertilizer product types. European Journal of Agronomy 69: 41-51.
Hosseini, S.E., Andwari, A.M., Wahid, M.A., and Bagheri, G. 2013. A review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews 27: 533-545.
IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel of Climate Change (IPCC). National Greenhouse Gas Inventories Programme. Online at: http://www.ipcc- nggip.iges.or.jp/public/2006gl/index.html.
Iribarren, D., and Vazquez-Rowe, I. 2013. Is labor a suitable input in LCA+ DEA studies? Insights on the combined use of economic, environmental and social parameters. Social Sciences 2: 114-130.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18: 336-345.
ISO (International Organization for Standardization). 2006. ISO 14040: 2006 (E) Environmental Management– Life Cycle Assessment– Principles and Framework.
Jaruwongwittaya, T., and Chen, G. 2010. A review: renewable energy with absorption chillers in Thailand. Renewable and Sustainable Energy Reviews 14: 1437-1444.
Khojastehpour, M., Nikkhah, A., and Hashemabadi, D. 2015. A comparative study of energy use and greenhouse gas emissions of canola production. International Journal of Agricultural Management and Development 5: 51-58.
Khojastepur, M., Taherirad, A., and Nikkhah, A. 2014. Life Cycle Assessment cotton production in Golestan Province based on biomass production, energy and money. Iranian Journal of Biosystems Engineering 46: 95-104. (In Persian with English Summary)
Khorramdel, S., Ghorbani, R., and Amin Ghafori, A. 2013. Compare the environmental impact of production systems in rainfed and irrigated barley using life cycle assessment. Journal of Plant Production Research 22: 243-264. (In Persian with English Summary)
Khoshnevisan, B., Rajaeifar, M.A., Clark, S., Shamahirband, S., Anuar, N.B., Shuib, N.L.M., and Gani, A. 2014. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment 481: 242-251.
Kirchmann, H., and Thorvaldsson, G. 2000. Challenging targets for future agriculture. European Journal of Agronomy 12: 145-161.
Koga, N., and Tajima, R. 2011. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan. Journal of Environmental Management 92: 967-973.
Koockeki, A., Nassiri Mahallati, M., Mahluji rad, M., and Fallahpour, F. 2013. Economic value of wheat production in ecosystems services (Triticum aestivum L.) in Khorasan. Journal of Agroecology 8: 612- 627. (In Persian with English Summary)
Koochakvar, M., Noori, M., Egilmez, G., and Tatari, O. 2014. Stochastic decision modeling for sustainable pavement designs. The International Journal of Life Cycle Assessment 19(6): 1185-1199.
Lin, H.C., and Fukushima, Y. 2016. Rice cultivation methods and their sustainability aspects: organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability 8: 529.
Liu, C., Zheng, X., Zhou, Z., Han, S., Wang, Y., Wang, K., and Yang, Z. 2010. Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil 332: 123-134.
Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., and Stolze, M. 2015. Environmental impacts of organic and conventional agricultural products–are the differences captured by life cycle assessment? Journal of Environmental Management 149: 193-208.
Meisterling, K., Samaras, C., and Schweizer, V. 2009. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production 17: 222-230.
Mirhaji, H., Khojastepur, M., Abbaspurfard, M., and Mahdavi Shahri, M. 2012. Environmental impact assessment sugar beet production using life cycle assessment (Case study: South Khorasan province). Journal of Agroecology 4: 112-120. (In Persian with English Summary)
Mirhaji, H., Khojastepur, M., Abbaspurfard, M., and Mahdavi Shahri, M. 2013. Environmental impact evaluation wheat production in Iran Marvdasht. Journal of Natural Environment, Natural Resources 66: 232-223. (In Persian with English Summary)
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S. 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724-733.
Mouron, P., Nemecek, T., Scholz, R. W., and Weber, O. 2006. Management influence on environmental impacts in an apple production system on Swiss fruit farms: combining life cycle assessment with statistical risk assessment. Agriculture, Ecosystems and Environment 114: 311-322.
National Institude of Statistic. 2012. Report on Economic, Social, Cultural, Golestan Province. http://www.amar.org.ir. (In Persian)
Nikkhah, A., Taheri rad, A., Khojastepur, M., Emadi, B., and Peyman, H. 2013. Environmental impact peanut production (Arachis hypogaea L.) in Astaneh Ashrafieh, Gilan Province. Journal of Agroecology 6: 373-382. (In Persian with English Summary)
Nikkhah, A., Emadi, B., Soltanali, H., Firouzi, S., Rosentrater, K.A., and Allahyari, M.S. 2016. Integration of life cycle assessment and Cobb-Douglas modeling for the environmental assessment of kiwifruit in Iran. Journal of Cleaner Production 137: 843-849.
Noori, M., Kucukvar, M., and Tatari, O. 2015. A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. International Journal of Sustainable Energy 34: 629-644.
Pang, M., Zhang, L., Wang, C., and Liu, G. 2015. Environmental life cycle assessment of a small hydropower plant in China. The International Journal of Life Cycle Assessment 20: 796-806.
Payraudeau, S., and van der Werf, H.M. 2005. Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems and Environment 107: 1-19.
Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., and Shiina, T. 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90: 1-10.
Sherwani, A.F., and Usmani, J.A. 2010. Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews 14: 540-544.
Snyder, C.S., Bruulsema, T.W., Jensen, T.L., and Fixen, P.E. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133: 247-266.
Soltani, A., Barzgar, A., Koockeki, A., Zinali, A., Ghaemi, A., and Hajar pur, A. 2015. Life Cycle Assessment (LCA) of sugar beet production in Khorasan in different systems. Journal of Crop Production 1: 42-62. (In Persian with English Summary)
Suleiman, R.A., and Rosentrater, K.A. 2014. Techno-economic analysis (TEA) and life cycle assessment (LCA) of maize storage in developing countries. 2014 Montreal, Quebec Canada July 13–July 16, 2014 (p. 1). American Society of Agricultural and Biological Engineers.
Thanawong, K., Perret, S.R., and Basset-Mens, C. 2014. Eco-efficiency of paddy rice production in Northeastern Thailand: a comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production 73: 204-217.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671-677.
Tilman, D., Socolow, R., Foley, J.A., Hill, J., Larson, E., Lynd, L., and Williams, R. 2009. Beneficial biofuels-the food, energy, and environment trilemma. Science 325: 270-271.
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85: 101-119.
Ullah, A., Perret, S. R., Gheewala, S. H., and Soni, P. 2016. Eco-efficiency of cotton-cropping systems in Pakistan: an integrated approach of life cycle assessment and data envelopment analysis. Journal of Cleaner Production 134: 623-632.
Veisi, H., Heidari, G., and Sohrabi, Y. 2015. The effect of two species of mycorrhizal fungi and different levels of humic acid and fertilizers on yield and (Helianthus annuus L.) yield components of sunflower. Journal of Agroecology 8: 567-582. (In Persian with English Summary)
Wang, M., Wu, W., Liu, W., and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. The International Journal of Sustainable Development and World Ecology 14: 400-407.
Wang, M., Xia, X., Zhang, Q., and Liu, J. 2010. Life cycle assessment of a rice production system in Taihu region, China. International Journal of Sustainable Development and World Ecology 17: 157-161.
Xia, Y., and Yan, X. 2011. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates. Biogeosciences 8: 3159-3168.
Yang, S.S., Lai, C.M., Chang, H.L., Chang, E.H., and Wei, C.B. 2009. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renewable Energy 34: 1916-1922.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., and Crowley, D. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139: 469-475.
You, H., and Zhang, X. 2016. Ecoefficiency of Intensive Agricultural Production and Its Influencing Factors in China: An Application of DEA-Tobit Analysis. Discrete Dynamics in Nature and Society.
Send comment about this article