Abdelgawad, H.,
Hassan, Y.M., Alotaibi, M.O.,
Mohammed, A.E., &
Saleh, A.M. (2020). C
3 and C
4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO
2.
Science of the Total Environment, 749, 142356. doi.org/10.1016/j.scitotenv.2020.142356.
Adavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., & Mansouri, H. (2018). Assessment of potato response to climate change and adaptation strategies. Scientia Horticulturae. 228, 91–102. doi.org/10.1016/j.scienta.2017.10.017.
Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37, 37-42. doi.org/10.1007/s13593-017-0443-9 .
Aminzadeh, G., Ghasemi, M., & Shahalinajad, S. (2015). The Bread Wheat "Mihan" Cultivar Suitable for Cultivation in Ardabil Province Cold Regions. Project report of Ministry of Agriculture Jihad Agricultural Research, Education and Extension Organization Ardabil Agriculture and Natural Resources Research and Education Centre. (In Persian)
Asseng, S., Foster, I.A.N., & Turner, N.C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012. doi.org/10.1038/s41467-020-18317-8.
Babaeian, I., Modirian, R., Karimian, M., & Zarghami, M. (2015). Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modeling system. Desert, 20(2), 123-134. doi.org/10.22059/jdesert.2015.56476.
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11–38. doi.org/10.1111/j.1365-3040.2007.01727.x.
Chattaraj, S., Chakraborty, D., Sehgal, V.K., Paul, R.K., Singh, S.D., Daripa, A., & Pathak, H. (2014). Predicting the impact of climate change on water requirement of wheat in the semi-arid Indo-Gangetic Plains of India. Agriculture, Ecosystems and Environment, 197, 174–183. doi.org/10.3390/w14172728.
Dastorani, M.T., & Poormohammadi, S. (2016). Mapping of climatic parameters under climate change impacts in Iran. Hydrological Sciences Journa,l. 61, 2552-2566. doi.org/10.1080/02626667.2015.1131898.
De Wit, A.J.W., Dabrowska-Zielinska, K., & Van Diepen, C.A. (2008). Modern methods in crop yield forecasting and crop area estimation. International Journal of Applied Earth Observation and Geoinformation, 10, 401-498. doi.org/10.1016/j.jag.2008.03.001.
Dixit, P.N., Telleria R., Al Khatib, A.N., & Allouzi, S.F. (2018). Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Science of the Total Environment, 610–611, 219–233. doi.org/10.1016/j.scitotenv.2017.07.270.
Ebadinezhad, J., Shahryari, R., & Ghasemi, M. (2014). Comparison grain yield and yield components on eight winter wheat varieties and lines in Ardabil cold areas. 13th Iranian Crop Science Congress. Seed and plant Improvement Institute, Karaj, Iran. pp. 1-4. (In Persian)
Ewert, F., Rodriguez, D., Jamieson, P., Semenov, M.A., Mitchell, R.A.C., Goudriaan, J., Porter, J.R., Kimball, B.A., Pinter Jr, P.J., Manderscheid, R., Weigel, H.J., Fangmeier, A., Fereres, E., & Villalobos, F. (2002). Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems and Environment, 93, 249–266. doi.org/10.1016/S0167-8809(01)00352-8.
Eyshi Rezaei, E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modeling. European Journal of Agronomy, 64, 98-113. doi.org/10.1016/j.eja.2014.10.003.
Farooq, M., Bramley, H., Palta, J.A., & Siddique, K.H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491–507. doi.org/10.1080/07352689.2011.615687.
Fouial, A., Khadra, R., Daccache, A., & Lamaddalena, N. (2016). Modeling the impact of climate change on pressurised irrigation distribution systems: use of a new tool for adaptation strategy implementation. Biosystems Engineering, 150, 182–190. doi.org/10.1016/j.biosystemseng.2016.08.010.
Fujimura, S., Shi, P., Iwama, K., Zhang, X., Gopal, J., & Jitsuyama, Y. (2021). Effects of CO2 increase on wheat growth and yield under different atmospheric pressures and their interaction with temperature. Plant Production Science, 15, 118-124. doi.org/10.1626/pps.15.118.
Ghasemi, M. (2017). Introduction of new cultivars and technical recommendations for autumn cereal cultivation in cold regions of Ardabil province. Project report of Seed and plant Improvement Institute of Ardebil. (In Persian).
Hatfield, J.L., & Prueger, J.H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. doi.org/10.1016/j.wace.2015.08.001.
Hesam Arefi, I., Saffari, M., & Moradi, R. (2018). Gap analysis of wheat production and influencing factors in Kerman province. Journal of Agroecology, 8(1), 106-123. (In Persian with English Summary). doi.org/10.1016/j.ae.2018.10.003.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., & Ritchie, J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235-265. doi.org/10.1016/S1161-0301(02)00107-7.
Khatun, S., Ahmed, J.U., & Mohi-Ud-Din, M. (2015). Variation of wheat cultivars in their relationship between seed reserve utilization and leaf temperature under elevated temperature. Journal of Crop Science and Biotechnology, 18, 97–101. doi.org/10.1007/s12892-014-0117-y.
Koocheki, A., Nassiri Mahalati, M. )2008(. Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iranian Journal of Field Crops Research, 6, 139-154. (In Persian with English Summary)
Li, C., Wang, R., Ning, H., & Luo, Q. (2016). Changes in climate extremes and their impact on wheat yield in Tianshan Mountains region, northwest China. Environmental Earth Sciences, 75, 1228. doi.org/10.1007/s12665-016-6030-6.
Luo, Qunying, OLeary, G., Cleverly, J., & Eamus, D. (2018). Effectiveness of time of sowing and cultivar choice for managing climate change: Wheat crop phenology and water use efficiency. International Journal of Biometeorology, 62, 1049–1061. doi.org/10.1007/s00484-018-1508-4.
Mathukumalli, S.R., Dammu, M., Sengottaiyan, V., Ongolu, S., Biradar, A.K., Kondru, V.R., Karlapudi, S., Bellapukonda, M.K.R., Chitiprolu, R.R.A., & Cherukumalli, S.R. (2016). Prediction of Helicoverpa armigera Hubner on pigeonpea during future climate change periods using MarkSim multimodel data. Agricultural and Forest Meteorology, 228–229, 130–138. doi.org/10.1016/j.agrformet.2016.07.009.
Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., & van Vuuren, D.P.P. (2013). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 156-169. doi.org/10.1007/s10584-011-0156-z.
Moradi, R., Koocheki, A., & Nassiri Mahallati, M. (2014). Adaptation of maize to climate change impacts in Iran. Mitigation and Adaptation Strategies for Global Change, 19, 1223–1238. doi.org/10.1007/s11027-013-9470-2.
Moradi, R., Koocheki, A., Nassiri Mahallati, M., & Mansoori, H. (2013). Adaptation strategies for maize cultivation under climate change in Iran: Irrigation and planting date management. Mitigation and Adaptation Strategies for Global Change, 18, 265-284. doi.org/10.1007/s11027-012-9410-6.
Mousavi, A., Ardalan, A., Takian, A., Ostadtaghizadeh, A., Naddafi, K., Bavani, A.M., (2020). Climate change and health in Iran: a narrative review. Journal of Environmental Health Science & Engineering, 18, 367–378. doi.org/10.1007/s40201-020-00462-3.
Nouri, M., Homaee, M., Bannayan, M., & Hoogenboom, G. (2016). Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes. Agricultural Water Management, 177, 248–263. doi.org/10.1016/j.agwat.2016.07.025.
Nouri, M., Homaee, M., Bannayan, M., & Hoogenboom, G. (2017). Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change. Agricultural Water Management, 186, 108-119. doi.org/10.1016/j.agwat.2017.03.004.
Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Iván Ortiz-Monasterio, J., & Reynolds, M. (2018). Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, 46–58. doi.org/10.1016/j.agee.2008.01.019.
Ozkan, B., & Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7, 367–380. doi.org/10.1023/A:1024792318063.
Rahimi, J., Laux, P., & Khalili, A. (2020). Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Köppen–Geiger climate zones. Theoretical and Applied Climatology, 141, 183–199. doi.org/10.1007/s00704-020-03190-8.
Rashid, M.A., Jabloun, M., Andersen, M.N., Zhang, X., Olesen, J.E. (2019). Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agricultural Water Management, 222 193–203. doi.org/10.1016/j.agwat.2019.06.004.
Roshan, G., Oji, R., & Al-Yahyai, S. (2014). Impact of climate change on the wheat-growing season over Iran. Arabian Journal of Geosciences, 7, 3217–3226. doi.org/10.1007/s12517-013-0917-2.
Sha, J., Li, X., & Wang, Z.L. (2019). Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios. Theoretical and Applied Climatology, 137, 3027–3039. doi.org/10.1007/s00704-019-02781-4.
Shirsath, P.B., Aggarwal, P.K., Thornton, P.K., & Dunnett, A. (2017). Prioritizing climate-smart agricultural land use options at a regional scale. Agricultural Systems, 151, 174–183. doi.org/10.1016/j.agsy.2016.09.018.
Shrestha, S., Bach, T.V., & Pandey, V.P. (2016). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science and Policy, 61, 1–13. doi.org/10.1016/j.agsy.2016.09.018.
Yin X., Guo W., & Spiertz J. H. (2009). A quantitative approach to characterize sink–source relationships during grain filling in contrasting wheat genotypes. Field Crops Research, 114, 119-126. doi.org/10.1016/j.fcr.2009.07.013.
Wang X., Li, L., Ding, Y., Xu, J., Wang, Y., Zhu, Y., Wang, X., & Cai, H. (2021). Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China. Agricultural Water Management, 243, 106409. doi.org/10.1016/j.agwat.2020.106409.
Yazdani, M.H., Amininia, K., Safarianzengir, V., & Soltani, N. (2021). Analyzing climate change and its effects on drought and water scarcity (Case study: Ardabil, Northwestern Province of Iran, Iran). Sustainable Water Resources Management, 7, 16-31. doi.org/10.1007/s40899-021-00494-z.
Yazdansepas, A., Akbari, A., Sanjari, A.G., Rezaie, M., Chiychi, M., Babaie, T., Aminzadeh, G., Zareh Fayzabadi, A., Azzatahmadi, M., & Ashouri, S. (2011). Mihan, a new bread wheat cultivar for irrigated and post-anthesis drought stress conditions in cold regions of Iran. Seed and Plant Improvement Journal, 37, 631-634. (In Persian with English Summary).
Zare Feyz Abadi, A., Koocheki, A., & Nassiri Mahalati, M. (2006). Trend analysis of yield, production and cultivated area of cereal in Iran during the last 50 years and prediction of future situation. Iranian Journal of Field Crops Research, 4, 49-70. doi.org/10.22067/gsc.v4i1.1318.
Zhang, X., Wang, X., Zhong, J., Zhou, Q., Wang, X., Cai, J., Dai, T., Cao, W., & Jiang, D. (2016). Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 127, 26–36. doi.org/10.1016/j.envexpbot.2016.03.004.
Send comment about this article