Afruzi, A., and Zare Abyaneh, H., 2020. Investigation of agricultural water demand under the combination scenarios of climate change, irrigation efficiency enhancement, cropping pattern changes, and the development of early-maturing cultivars: A case study of Hamedan-Bahar Plain. Iranian Journal of Irrigation and Drainage 1(14): 61-75. (In Persian with English Summary)
Afzalinia, S., 2020. Tillage effects on energy use and greenhouse gas emission in wheat-cotton rotation. Iran Agricultural Research 39(1): 13-24. (In Persian with English Summary)
Ahmad, A., and Khan, S., 2009. On comparison of water and energy productivities in pressurized irrigation systems. 18th World IMACS/ MODSIM Congress, Cairns p. 2776–2782.
Basiri, M., Ghamarnia, H., and Ghobadi, M., 2020. Effect of different deficit irrigation and salinity management on leaf, shoot and root growth of (Mentha piperita L.). Journal of Water and Irrigation Management 1(10): 1-14. DOI: 10.22059/JWIM.2019.281106.681 (In Persian with English Summary)
Beheshti Tabar, I., Keyhani, A., and Rafiee, S., 2010. Energy balance in Iran's agronomy (1990-2006). Renewable and Sustainable Energy Reviews 14: 849-855. https://doi.org/10.1016/j.rser.2009.10.024
Behmanesh, J., Aligolinia, T., Rezaie, H., and Montasery, M., 2016. Determination and evaluation of blue and green water footprint of dominant tillage crops in Urmia lake watershed. Journal of Water and Soil Conservation 23(3): 337-344. DOI:10.22069/JWFST.2016.3203 (In Persian with English Summary)
Cheng, K., Yan, M., Nayak, D., Smith, P., Pan, G.X., and Zheng, J.W., 2014. Carbon footprint of crop production in China: An analysis of national statistics data. The Journal of Agricultural Science 153: 422-431.
https://doi.org/10.1017/S0021859614000665
Elbehri, A., and Sadiddin, A., 2016. Climate change adaptation solutions for the green sectors of selected zones in the MENA region. Future of Food. Journal on Food, Agriculture and Society 4(3): 39-54.
Esengun, K., Erdal, G., Gunduz, O., and Erdal, H., 2007. An economic analysis and energy use in staketomato production in Tokat province of Turkey. Renewable energy 32: 1873-1881.
https://doi.org/10.1016/j.renene.2006.07.005
Fabiani, S., Vanino, S., Napoli, R., and Nino, P., 2020. Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environmental Science and Policy 104: 1–12.
https://doi.org/10.1016/j.envsci.2019.10.008
Farajian, L., Moghaddasi, R., and Hosseini, S., 2018. Agricultural energy demand modeling in Iran: Approaching to a more sustainable situation. Energy Reports 4: 260–265.
https://doi.org/10.1016/j.egyr.2018.03.002
Garcia, D.J., Lovett, B.M., and You, F., 2019. Considering agricultural wastes and ecosystem services in Food-Energy-Water-Waste Nexus system design. Journal of Cleaner Production 228: 941–955.
https://doi.org/10.1016/j.jclepro.2019.04.314
Ghiyasi, M., Pouryousef, M., Myandoab, M., Tajbakhsh, A., Hasanzade- Gorttape, M., and Salehzade, H., 2008. The evaluation of energy balance of wheat under low input farming in west Azerbaijan. Research Journal of Biological Sciences 12(3): 1408–1410.
Hatirli, S.A., Ozkan, B., and Fert, K., 2005. An econometric analysis of energy input/ output in Turkish agriculture. Renewable and Sustainable Energy Reviews 9: 608–623.
https://doi.org/10.1016/j.rser.2004.07.001
Jat, H.S., Jat, R.D., Nanwal, R.K., Lohan, S.K., Yadav, A.K., Poonia, T., Sharma, P.C., and Jat, M.L., 2020. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renewable Energy 155: 1372–1382.
https://doi.org/10.1016/j.renene.2020.04.046
Kamali, M.E., 2021. Determining the amount of water required for Maize irrigation in Mazandaran province. Extension Journal of Oilseed Plants 2(2): 93-103. (In Persian with English Summary)
Khoshnevisan, B., Rafiee, S., Omid, M., and Mousazadeh, H., 2013a. Reduction of CO
2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy 55: 676–682.
https://doi.org/10.1016/j.energy.2013.04.021
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., and Movahedi, M., 2013b. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 52: 333–338.
https://doi.org/10.1016/j.energy.2013.01.028
Krejcie, R.V., & Morgan, D.W., (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement.
Maysami, M., and Jalali, A., 2020. Evaluation of energy input-output in wheat crop cultivation in agro-industry company of mazare novin Iranian (Agh Ghalla). Journal of Agricultural Science and Sustainable Production 30(2): 333-346. (In Persian with English Summary)
Mirbalooch, M.N., Delbari, M., and Piri, H., 2020. Evaluation of performance of classical sprinkler irrigation systems with mobile sprinkler in Khash city. Journal of Water and Irrigation Management 10(1): 31- 44. DOI: 10.22059/JWIM.2020.292131.732 (In Persian with English Summary)
Mohammadi, A., and Banihabib, M.E., 2020. Strategic management model for virtual water exchange of Iranian agricultural and animal productions. Journal of Water and Irrigation Management 10(1): 15-29. DOI: 10.22059/JWIM.2020.292971.731 (In Persian with English Summary)
Mohammadi, A., Rafiee, S.H., Jafari, A., Keyhani, A., Mousavi-Avva, S.H., and Nonhebe, S., 2014. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renewable and Sustainable Energy Reviews 30: 724–733.
https://doi.org/10.1016/j.rser.2013.11.012
Moradi, R., and Pourghasemian, N., 2017. Greenhouse gases emission and global warming potential as affected by chemicals inputs for main cultivated crops in Kerman province: I- Cereal. Journal of Agroecology 9(2): 389-405. DOI: 10.22067/JAG.V9I2.42033 (In Persian with English Summary)
Pishgar-Komleh, S.H., Ghahderijani, M., and Sefeedpari, P., 2012. Energy consumption and CO
2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production 33: 183–191.
https://doi.org/10.1016/j.jclepro.2012.04.008
Rezvantalab, N., Soltani, A., Zeinali, E., and Foroughnia, A., 2019. Study of energy indicators and greenhouse gas emissions in wheat production in Golestan province. Journal of Agroecology 9(1): 17-38. (In Persian with English Summary)
Sadeghi, S.H., Sharifi Moghadam, E., Delavar, M., and Zarghami, M., 2020. Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agricultural Water Management 233: 106071.
https://doi.org/10.1016/j.agwat.2020.106071
Shabanzadeh, M., Esfanjari Kenari, R., and Rezaei, A., 2016. Investigating the energy pattern of tomato production in Khorasan Razavi province. Journal of Agricultural Machinery 6(2): 524-536. https://doi.org/10.22067/jam.v6i2.37724 (In Persian with English Summary)
Singh, H., Mishra, D., and Nahar, N.M., 2010. Energy use pattern in production agriculture of a typical village in arid zone India – Part I. Energy Conversion and Management 43(16): 2275-2286.
https://doi.org/10.1016/S0196-8904(01)00161-3
Soni, P., Taewichit, C., and Salokhe, V.M., 2013. Energy consumption and CO
2 emissions in rainfed agricultural production systems of Northeast Thailand. Agricultural Systems 116: 25-36.
https://doi.org/10.1016/j.agsy.2012.12.006
Taghinazhad, J., Vahedi, A., and Ranjbar, F., 2019. Economic assessment of energy consumption and greenhouse gas emissions from wheat production in Ardabil provience. Environmental Sciences 17(3): 137-150. https://doi.org/10.29252/envs.17.3.137 (In Persian with English Summary)
Tan, I., Storelvmo, T., and Zelinka, M., 2016. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 6282(352): 224-227. DOI: 10.1126/science.aad5300
Tian, H., Lu, C., Ciais, P., Michalak, A.M., Canadell, J.G., Saikawa, E., Huntzinger, D.N., Gurney, K.R., Sitch, S., and Zhang, B., 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531: 225-228. https://doi.org/10.1038/nature16946
Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K., 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (
Beta vulgaris) production in the UK. Agricultural Systems 85: 101–119.
https://doi.org/10.1016/j.agsy.2004.07.015
Yousefi, M., Mahdavi Damghani, A., and Khoramivafa, M., 2016. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran. Environmental Science and Pollution Research 23(8): 7390–7397.
https://doi.org/10.1007/s11356-015-5964-7
Zahedi, M., Eshghizadeh, H.R., and Mondani, F., 2015. Energy efficiency and productivity in potato and sugar beet production systems in Isfahan province. Journal of Crop Production and Processing 5(17):181-191. DOI: 10.18869/acadpub.jcpp.5.17.181 (In Persian with English Summary)
Send comment about this article