بهبود عملکرد کمّی و کیفی سیاهدانه (Nigella sativa L.)در کشت مخلوط با شنبلیله (Trigonella foenum-graecum L.)

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

کشت مخلوط یکی از پایداراترین نظام­های زراعی می­باشد، گیاهان دارویی نیز نقش مهمی در تأمین نیازهای انسان دارند، بنابراین، به‌منظور ارزیابی عملکرد و کیفیت گیاه دارویی سیاهدانه  (Nigella sativa L.)در کشت مخلوط با شنبلیله (Trigonella foenum-graecum L.) آزمایشی در مزرعه­ تحقیقاتی دانشکده کشاورزی دانشگاه کردستان طی سال زراعی 1394 انجام شد. آزمایش در قالب طرح بلوک­های کامل تصادفی با سه تکرار اجرا شد. تیمار­های آزمایشی شامل کشت خالص سیاهدانه، کشت خالص شنبلیله، 50% سیاهدانه + 50% شنبلیله، 25% سیاهدانه + 75% شنبلیله، 75% سیاهدانه + 25% شنبلیله، 100% سیاهدانه + 5/12% شنبلیله، 100% سیاهدانه + 25% شنبلیله، 100% سیاهدانه + 5/37% شنبلیله، 100% سیاهدانه + 50% شنبلیله بر اساس سری­های جایگزینی و افزایشی بودند. در این پژوهش صفات مختلف از قبیل تعداد شاخه جانبی در بوته، تعداد کپسول در بوته، تعداد دانه در کپسول، وزن هزار دانه، عملکرد وزن خشک کل، عملکرد دانه، درصد اسانس و عملکرد اسانس سیاهدانه، تعداد شاخه جانبی در بوته، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن هزار دانه، عملکرد وزن خشک کل و عملکرد دانه شنبلیله و هم‌چنین شاخص­های کشت مخلوط مانند LER و ATER مورد ارزیابی قرار گرفتند. نتایج نشان داد نسبت­های مختلف کاشت، اثر معنی­داری بر صفات نام‌برده هر دو گیاه داشت. بیش‌ترین مقادیر عملکرد دانه (15/972 کیلوگرم در هکتار) و عملکرد وزن خشک کل (1/2757 کیلوگرم در هکتار) سیاهدانه از نسبت 100% سیاهدانه + 5/12% شنبلیله حاصل شد؛ امّا نتایج در مورد شنبلیله نشان داد بیش‌ترین عملکرد دانه و عملکرد وزن خشک کل به‌ترتیب با مقادیر 4/784 و 7/3266 کیلوگرم در هکتار از کشت خالص آن حاصل گردید. بر اساس نتایج این آزمایش، بیش‌ترین ATER (30/1) از تیمار افزایشی 100% سیاهدانه + 5/12% شنبلیله به‌دست آمد. لذا چنین می­توان استنباط کرد که در پژوهش حاضر، این نسبت کشت مخلوط افزایشی در مقایسه با سایر نسبت­ها، ویژگی­های مثبت بیش‌تری داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Improving Quantitative and Qualitative Yield of Black Cumin (Nigella sativa L.) in Intercropping with Fenugreek (Trigonella foenum-graecum L.)

نویسندگان [English]

  • Eftekhar Rahmati
  • Shiva Khalesro
  • GholamReza Heidari
Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Introduction
Intercropping system is one of the most important strategies for achieving sustainable agriculture goals. Intercropping increases biodiversity in agroecosystems and enhances yield on a given piece of land by making more efficient use of the available resources. In these systems, legumes are a key functional group, and are highly valued for the agroecological services they provide. Adding legumes in fields is justified by their natural ability to exploit atmospheric nitrogen. This additional source of N is expected to avoid inter-specific competition between plants and legumes for N acquisition. Medicinal plants play pivotal role in human health. The use of sustainable agriculture is the foundation for safe and healthy Medicinal plants. Therefore, the purpose of this research was evaluation of quantitative and qualitative traits of black cumin (Nigella sativa L.) and fenugreek (Trigonella foenum-greacum L.) in additive and replacement series of intercropping.
Materials and Methods
Field experiment was conducted at the Agricultural Research station, University of Kurdistan, during 2015 growing season. In this research, qualitative and quantitative traits of black cumin and fenugreek were investigated. Experimental design was randomized complete block with three replications. Experimental factors were 50% fenugreek + 50% black cumin, 25% black cumin + 75% fenugreek, 75% black cumin + 25% fenugreek, 100% black cumin + 12.5% fenugreek, 100% black cumin + 25% fenugreek, 100% black cumin + 37.5% fenugreek, 100% black cumin + 50% fenugreek based on replacement and additive series and their monocultures. The seeds were sown directly on 4th of May for both plants. In this study, morphological characteristics consisted of branch number per plant, follicle number per plant, seed number per follicle, 1000 seed weight, essential oil content, essential oil yield of black cumin and branch number per plant, pod number per plant, seed number per pod, 1000 seed weight of fenugreek and biological and seed yield were measured in both plants. Intercropping indexes included of LER and ATER were also evaluated. The obtained data were subjected to analysis of variance (ANOVA) using SAS statistical software and means were compared using the least significant difference test (L.S.D) at level of 0.05.
Results and Discussion
The results revealed that different intercropping ratios had significant effect on morphological traits, biological and seed yield of both plants. The usage of 100% black cumin + 12.5% fenugreek gave the highest values of branch number per plant (18.87), follicle Number per plant (29.73), Seed number per follicle (52.6), 1000-seed weight (2.67 g), seed yield (972.1 kg.ha-1), biological yield (2757.1 kg.ha-1) and essential oil yield (11.19 kg.ha-1) of black cumin. It seems that black cumin was more efficient for uptake nutrient resources in comparison with fenugreek. With increasing fenugreek density different traits of black cumin decreased in the other additive treatments. This decrement maybe related to the effect of density which increases competition. Statistical analysis revealed that all traits of fenugreek such as branch number per plant, pod number per plant, Seed number per pod, 1000-seed weight, biological yield and seed yield were 12.27, 16.80, 11.63, 15.77g, 3266.7 kg.ha-1 and 874.4 kg.ha-1, respectively. These values belonged to monoculture of fenugreek. Intercropping indexes included of LER (1.36) and ATER (1.30) showed higher values in 100% black cumin + 12.5% fenugreek treatment.
Conclusion
The highest values of most characteristics of black cumin were obtained from 100% black cumin + 12.5% fenugreek. Furthermore, it could be concluded that the mentioned additive series was the best treatment of intercropping and gave the highest LER and ATER due to improved growth condition.

کلیدواژه‌ها [English]

  • Essential oil
  • Additive series
  • Sustainable agriculture
  • Medicinal plants
Amosse, C., Jeuffroy, M.H., Mary, B., and David, C., 2014. Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems. Nutrient Cycling in Agroecosystems 98: 1-14.
Antuono, L.F., Moretti, A., and Lovato, A.F.S., 2002. Seed yield components, oil content and essential oil content and composition of Nigella sativa L. and Nigella damascene L. Industrial Crops and Products 15: 59 – 69.
Awal, M.A., Pramanik, M.H.R., and Hossen, M.A., 2007. Interspecies competition, growth and yield in Barley-Peanut intercropping. Asian Journal of Plant Sciences 6(4): 577-584.
Banik, P.A., Midya, B.K., Sarkar, S., and Ghose, S., 2006. Wheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. European Journal Agronomy 24: 325-332.
Bassim Atta, A., 2003. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food Chemistry 83: 63-68.
Bigonah, R., Rezvani Moghadam, P., and Jahan, M., 2015. Effect of different fertilizer management on some quantitative and qualitative traits of (Coriandrum sativum L.). Iranian Journal of Field Crops Research 12(4): 574-581. (In Persian with English Summary)
Bilasvar, H.M., Salmasi, S.Z., Valizadeh, M., Janmohammadi, H., and Lotfi, R., 2016. Cropping pattern and time of harvest effects on essential oil content of two sweet basil cultivars in intercropping with corn. Advances in Bioresearch 7(2): 22-27.
Carruthers, K., Prithirviraj, B., Clouter, D., Martin, R.C., and Smith D.L., 2000. Intercropping corn with soybean, lupine and forages: Yield component responses. European Journal of Agronomy 12: 103-115.
Duchene, O., Vian, J.F., and Celette, F., 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment 240: 148-161.
Ghosh, P.K., Tripathi, A.K., Bandyopadhyay, K.K., and Manna, M.C., 2009. Assessment of nutrient competition and nutrient requirement in soybean/sorghum intercropping system. European Journal of Agronomy 31: 43-50.
Hamzei, J., 2013. Evaluation of yield, SPAD index, land use efficiency and system productivity index of barley (Hordeum vulgare) intercropped with bitter vetch (Vicia Ervilia). Journal of Crop Production and Processing 4: 79-91. (In Persian with English Summary)
Hassanzadeh, F., Koocheki, A., Khazaie, H.R., and Nassiri Mahallati, M. 2011. Effect of plant density on growth characteristics and yield of summer savory (Satureja hortensis L.) and Persian clover (Trifolium resupinatum L.) Intercropping. Iranian Journal of Field Crops Research 8(6): 920-929. (In Persian with English Summary)
Jahani, M., Koocheki, A., and Nassiri Mahallati, M., 2008. Comparison of different intercropping arrangements of cumin (Cuminum cyminum) and lentil (Lens culinaris). Iranian Journal of Field Crops Research 6(1): 67-78. (In Persian with English Summary)
Jose, G.F., Stephen, R., and King, A.V., 2018. Component crop physiology and water use efficiency in response to intercropping. European Journal of Agronomy 93: 27-39.
Kapoor, R., Giri, B., and Mukerji, K.G., 2004. Improved growth and essential oil yield and quality in (Foeniculum vulgare Mill.) on mycorrhiza inoculation supplemented with p- fertilizer. Journal of Bioresource Technology 93: 307- 311.
Koocheki, A., Nasiri Mahallati, M., Broumand Rezazadeh, Z, Jahani, M., and Jafari, L., 2014. Evaluation yield of medicinal plant (Nigella sativa L.) in intercropping with (Cicer arietinum L.) and (Phaseolus vulgaris L.). Iranian Journal of Field Crops Research 12(1): 1-8. (In Persian with English Summary))
Koocheki, A., Seyyedi, S.M., and Gharaei, S.H., 2016. Evaluation of the effects of saffron–cumin intercropping on growth, quality and land equivalent ratio under semi-arid conditions. Scientia Horticulturae 201: 190-198.
Kumar, B.R.M., Mansur, C.P., Salimath, P.M., Alagundagi, S.C., and Sarawad, I.M., 2009. Influence of different row proportions on yield components and yield of rabi crops under different intercropping systems. Karnataka Journal of Agricultural Sciences 22: 1087-1089.
Maffei, J., and Mucciarelli, M., 2003. Essential oil yield in pipper mint-soybean strip-cropping. Field Crops Research 84: 229-240.
Martin Guay, M.O., Paquette, A., Dupras, J., and Rivest, D., 2018. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Science of the Total Environment 615: 767-772.
Mazaheri, D., 1998. Intercropping. Tehran University Publication, Tehran, Iran 262 p. (In Persian)
Mead, R., and Willey, W., 1980. The concept of land equivalent ratio and advantages in yields from intercropping. Experimental Agriculture 16: 217-228.
Mirhashemi, S.M., Koocheki, A., Parsa, M., and Nassiri Mahallati, M., 2009. Evaluating the benefit of ajowan and fenugreek intercropping in different levels of manure and planting pattern. Iranian Journal of Field Crops Research 7(1): 269-279. (In Persian with English Summary)
Morales, R.E.J., Escalante, E.J.A., Sosa, C.L., and Volke, H.V.H., 2009. Biomass, yield and land equivalent ratio of Helianthus annus L. in sole crop and intercropped with Phaseolus vulgaris L. in high valleys of Mexico. Tropical and Subtropical Agro ecosystems 10: 431–439.
Omidbaigi, R., 2004. Production and processing of medicinal plants. Third Edition. Astane Ghodse Razavi Publication, Mashhad, Iran 397 p. (In Persian)
Rajeswara Rao, B.R., 2002. Biomass yield, essential oil yield and essential oilcomposition of rose-scented geranium (Pelargonium species) as influenced by row spacings an intercropping with corn mint (Mentha arvensis L.f. piperascens Malinv. Ex Holmes). Industrial Crops and Products 16: 133–144.
Rezaeichiyaneh, E., Valizadegan, O., Tajbakhsh, M., Dabbagh Mohammadi Nasab, A., and Rimaz, V., 2014. Evaluation of agronomical yield and insect diversity at diffirent intercropping patterns of bean (Phaseolus vulgaris L.) and dill (Anethun graveolens L.). Journal of Crops Improvement 2(16): 353-368. (In Persian)
Rezvani Moghadam, P., Raoofi, M.R., Rashed Mohassel, M.H., and Moradi, R., 2009. Evaluation of sowing patterns and weed control on mung bean (Vigna radiate L. Wilczek) - black cumin (Nigella sativa L.) intercropping system. Journal of Agroecology 1(1): 65-79. (In Persian with English Summary)
Sadri, S., Pouryousef, M., and Solaimani, A., 2014. Evaluation of essential oil yield and indexes in intercropping of fennel and fenugreek. Iranian Journal of crop improvement 16(4): 921-932. (In Persian with English Summary)
Sainju, U.M., Whitehead, W.F., Singh, B.P., and Wang, S., 2006. Tillage, cover crops, and nitrogen fertilization effects on soil nitrogen and cotton and sorghum yields. European Journal of Agronomy 25: 372-382.
Sarkar, R.K., and Kunda, C., 2001. Sustainable intercropping system of sesame (Sesamum indicum) with pulse and oilseed crop on rice fallow land. Indian Journal of Agricultural Sciencec 71: 545-550.
Sastava, B.M., Lavan, M., and Maina, Y.T., 2004. Management of insect pests of soybean: effects of sowing date and intercropping on damage and grain yield in the Nigerian Sudan savanna. Crop Protection 23: 155-161.
Sherma, A.R., and Behera, U.K., 2009. Recycling of legume residues for nitrogen economy and higher productivity in maize (Zea mays L.) – wheat (Triticum aestivum) cropping system. Nutrient Cycling in Agroecosystem 83: 197-210.
Singh, M., Singh, A., Singh, R.S., Tripathi, A.K., Singh, D., and Patra, D., 2010. Cowpea (Vigna unguiculata L. Walp.) as a green manure to improve the productivity of a menthol mint (Mentha arvensis L.) intercropping system. Industrial Crops and Products 31: 289-29.
Sobkowicz, P., 2006. Competition between triticale (Triticoscale Witt.) and field beans (Vicia faba L.) in additive intercrops. Plant, Soil and Environment 52: 42-54.
Vandermeer, J.H., 1989. The ecology of intercropping. Cambridge University Press.
Zarifpour, N, Naseri Poor Yazdi, M.T., and Nasiri Mahallati, M., 2014. Effect of different intercropping arrangements of cumin (Cuminum cyminum L.) and chickpea (Cicer arietinum L.) on quantity and quality characteristics of Species. Iranian Journal of Field Crops Research 12 (1): 34-43. (In Persian with English Summary)
Zhang L., Vanderwerf, W., Bastiaans, L., Zhang, S., Li., B., and Spierts, J.H., 2008. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research 107: 29-42.
CAPTCHA Image