ارزیابی مدل DSSAT-CROPGRO-Canola برای شبیه‌سازی رشد و عملکرد دو رقم کلزا (Brassica napus L.) در منطقه کرج

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه اگرواکولوژی دانشکده کشاورزی، دانشگاه زابل، زابل، ایران.

3 پژوهشکده علوم محیطی، دانشگاه شهید بهشتی تهران، ایران

4 مؤسسه تحقیقات و تهیه نهال و بذر، کرج، ایران.

5 پژوهشگاه انرژی اتمی، پژوهشکده کشاورزی هسته‌ای، ایران.

چکیده

مدل‌سازی رشد و عملکرد کلزا یک روش مفید برای پیش‌بینی پاسخ کلزا (Brassica napus L.) به محیط‌های مختلف است. در این مطالعه، مدل CSM-CROPGRO-Canola در نرم‌افزار DSSAT v4.7 برای شبیه‌سازی رشد و عملکرد دو رقم کلزای بهاره (دلگان و هایولا420) در منطقه کرج بررسی شد. این مدل با استفاده از داده‌های گیاهی و خصوصیات خاک جمع‌آوری شده از آزمایش‌های مزرعه‌ای تحت تیمارهای تاریخ کاشت و کود نیتروژن طی دو فصل رشد (97-1395) مورد بررسی قرار گرفت. نتایج اعتبارسنجی مراحل فنولوژیکی (شروع گل‌دهی، شروع خورجین‌دهی، شروع تشکیل دانه و رسیدگی فیزیولوژیک) نشان داد که برای رقم دلگان مقادیر جذر میانگین مربعات خطا (RMSE) کمتر از چهار روز و برای رقم هایولا کمتر از پنج روز بود که نشان‌دهنده توانایی مدل در شبیه‌سازی مراحل نموی بوده است. همچنین مدل به‌خوبی توانست در تاریخ‌های مختلف کاشت و همچنین سطوح مختلف کود نیتروژن، ماده خشک کل را شبیه‌سازی کند. نتایج اعتبارسنجی عملکرد دانه ارقام کلزا نیز نشان داد که مقدار RMSE 395 و 265 کیلوگرم در هکتار، d 97/0 و R2 برابر با **89/0 و **91/0 به‌ترتیب برای رقم دلگان و هایولا 420 بود که نشان از دقت بالای مدل و واسنجی مناسب آن می‌باشد. بنابراین، می‌توان نتیجه گرفت که شبیه‌سازی کلزا با استفاده از مدل CSM-CROPGRO-Canola رضایت‌بخش بوده است و نشان‌دهنده برآورد صحیح پارامترهای مدل و تصدیق‌کننده کارایی مدل در پیش‌بینی مراحل نموی و صفات مربوط به رشد و عملکرد ارقام کلزا می‌باشد. بدین ترتیب این مدل می‌تواند برای ارزیابی تاثیرات مختلف مدیریت زراعی و تصمیم‌گیری در نظام‌های کشت کلزا مورد استفاده قرار گیرد. یکی از این تصمیم‌گیری‌ها تعیین بهترین تاریخ کاشت کلزای بهار در منطقه است. با توجه به نتایج شبیه‌سازی عملکرد دانه ارقام در تاریخ کاشت‌های مختلف با داده‌های بلندمدت، توصیه می‌شود، عملیات کاشت کلزای بهاره در این منطقه حداکثر تا 20 اسفند انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of DSSAT-CROPGRO-Canola Model to Simulate Growth and Yield of Two Canola (Brassica napus L.) Cultivars in Karaj

نویسندگان [English]

  • Gelareh Goodarzi 1
  • Ahmad GHanbari 2
  • Saeid Soufizadeh 3
  • Hamid Jabbari 4
  • Ali Eskandari 5
1 Department of Agronomy, Faculty of Agriculture, Zabol University, Zabol, Iran
2 Department of Agroecology, Faculty of Agriculture, Zabol University, Zabol, Iran
3 Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
4 Seed and Plant Improvement Institute (SPII) Department of Oilseeds. Karaj, Iran.
5 Crop Physiology, Nuclear Agriculture Research Institute, Iran.
چکیده [English]

Introduction
Canola (Brassica napus L.) is known as the third most important oil crop in the world and is now cultivated over a large area of the world's farms in rotation with various crops, especially cereals (Reddy and Redi, 2003). Simulation models are a useful tool for predicting crop responses to different environments. The CSM-CROPGRO model (Jones et al., 2003) was integrated into the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating spring rapeseed (Saseendran et al., 2010). Due to limited studies on simulating the growth and yield of rapeseed in Iran, especially using DSSAT models, the purpose of this study was to calibrate and evaluate the DSSAT-CROPGRO-Canola model for simulating the growth and yield of two canola cultivars with different treatments of planting date and nitrogen in Karaj, Iran.
Materials and Methods
A field experiment was performed as a split-plot factorial based on a randomized complete block design with three replications in 2017 and 2018. Two spring canola cultivars (Dalgan and Hyola-420) were planted under three levels of nitrogen (0, 70, and 210 kg.ha-1) on two planting dates (28 Feb and 19 Mar). Planting date was considered as the main factor, and cultivars and nitrogen levels were considered as sub-factors. Measured data during the growing season were leaf area index (LAI), total dry matter (TDM), yield and yield components, and dates of flowering and physiological maturity. Daily weather data, management events, and soil characteristics are imported to DSSAT. The first-year experimental data were used for calibration, and second-year data were used for model evaluation of developmental stages, LAI, TDM, and grain yield. The performance of the DSSAT-CROPGRO-Canola model during the calibration and evaluation was assessed using different statistics, root mean square error (RMSE), normalized RMSE (nRMSE), Willmott’s index (d), and coefficient of determination (R2) of a 1:1 regression line.
Results and Discussion
The results of evaluating phenological stages (anthesis day, first pod day, first seed day, and physiological maturity day) showed that the RMSE for the Dalgan cultivar was less than four days, and for the Hyola-420 cultivar, it was less than five days. This indicates that the model performed excellently in accurately simulating developmental stages. The model was able to simulate LAI up to the pod formation stage in different treatments. The nRMSE and d were 24.88% and 0.92 for the Dalgan cultivar and 22.72% and 0.95 for the Hyola-420 cultivar, respectively.
The model was also able to simulate the total dry matter at different planting dates as well as different levels of nitrogen fertilizer, and the values of nRMSE, d, and R2 for the Dalgan cultivar were 24.97%, 0.97 and 0.91**. For the Hyola-420 cultivar, the values were 22.73%, 0.98, and 0.94**. Additionally, the nRMSE, d, and R2 values for the number of grains per square meter were 14.97%, 0.98, and 0.91** for the Dalgan cultivar and 15.37%, 0.98, and 0.90** for the Hyola-420 cultivar, respectively.
The evaluation results for grain yield of canola cultivars showed that the RMSE was 395 and 265 kg.ha-1, d was 0.97, and R2 was 0.89** and 0.91** for Dalgan and Hyola-420 cultivars, respectively, confirming the high accuracy of the calibration. Therefore, this model can be used to evaluate the different effects of crop management and make decisions in canola cultivation systems. One of these decisions is to determine the best planting date for spring canola cultivars in the region. Based on the long-term model simulation of cultivars in different planting dates, it is recommended to plant spring canola up to 11 March in this region.
Conclusion
The results of this study showed that the DSSAT-CROPGRO-Canola model had reliably good performance under different management and environmental conditions. CSM-CROPGRO-Canola model predicts grain yield responses to management and environmental conditions well and can now be employed for assessing the impacts of various agronomic management strategies and decisions making in canola production systems in Iran.
 

کلیدواژه‌ها [English]

  • Developmental stages
  • Genetic coefficients
  • Leaf area index
  • Modeling
Amiri, S.R. )2018(. Determining the optimum sowing date of chickpea in Kermanshah province using modeling approach. Journal of Plant Ecophysiology. 10(32), 130-141. (In Persian with English Summary)
Arvaneh, H., Abbasi, F., & Eslami, H. (2011). Validation and testing of AquaCrop under farmers’ management, 1st National Conference on Agrometeorology and Agricultural Water Management. University of Tehran, Iran. 22 Novamber 2011, p. 125.
Bakhshi, B., Rostami-Ahmadvandi, H., & Fanaei, H. R. (2021). Camelina, an adaptable oilseed crop for the warm and dried regions of Iran. Central Asian Journal of Plant Science Innovation, 1(1), 39-45. http://www.cajpsi.com/article_128592.html
Bannayan, M., Crout, N. M. J., & Hoogenboom, G. (2003). Application of the CERES-wheat model for within-season prediction of winter wheat yields in the United Kingdom. Agronomy Journal, 95, 114-125. https://doi.org/10.2134/agronj2003.1140a
Boogaard, H. L., Van Diepen, C. A., Rotter, R.P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Boote, K. J., Jones, J.W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In: G. Tsuji G. Hoogenboom and P. Thornton (Eds). Understanding options for agricultural production. Springer, the Netherlands. p. 99-128.
Boote, K.J., Mínguez, M. I., & Sau, F. (2002). Adapting the CROPGRO–legume model to simulate growth of faba bean. Agronomy Journal, 94, 743-756.
Deihimfard, R., Nassiri Mahallati, M., & Koocheki, A. (2015). Yield gap analysis in major wheat growing areas of Khorasan province, Iran, through crop modeling. Field Crops Research, 184, 28-38. https://doi.org/10.1016/j.fcr.2015.09.002
Deligios, P.A., Farci, R., Sulas, L., Hoogenboom, G., & Ledda, L. (2013). Predicting growth and yield of winter rapeseed in a Mediterranean environment: Model adaptation at a field scale. Field Crops Research, 144, 100-112. http://dx.doi.org/10.1016/j.fcr.2013.01.017
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to simulate rapeseed yield. Iranian Journal of Irrigation and Drainage, 13, 715-726. (In Persian with English Summary)
Fallah, M. H., Nezami, A., Khazaie, H. R., & Nassiri Mahallati, M. (2021). Evaluation of DSSAT-Nwheat model across a wide range of climate conditions in Iran. Journal of Agroecology, 12, 561-580. (In Persian with English Summary) https://doi.org/10.22067/jag.v12i4.77250
FAOSTAT. (2019). FAO, Statistics Division. http://faostat3.fao.org/ download/T/TP/E (verified 15 March 2019).
Farhangfar, S., Bannayan, M., Khazaei, H. R., & Mousavi Baygi, M. (2017). Evaluating canola yield under arid and climate change conditions. Iranian Journal of Field Crops Research, 15, 355-367. (In Persian with English Summary)
Gabrielle, B., Denoroy, P., Gosse, G., Justes, E., & Andersen, M. N. (1998). Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Research, 57, 95-111. https://doi.org/10.1016/S0378-4290(97)00120-2
Gammelvind, L. H., Schjoerring, J. K., Mogensen, V.O., Jensen, C.R., & Bock, J. G. H. (1996). Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L.). Plant and Soil, 186, 227–236.
Geerts, S., & Raes, D. (2009). Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, 1275-1284. https://doi.org/10.1016/j.agwat.2009.04.009
Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M. E., Scaglia, B., & Confalonieri, R. (2016). Wofost -GTC: A new model for the simulation of winter rapeseed production and oil quality. Field Crops Research, 197, 125-132.
Habekotté, B. (1997). Options for increasing seed yield of winter oilseed rape (Brassica napus L.): A simulation study. Field Crops Research, 54, 109-126. https://doi.org/10.1016/S0378-4290(97)00041-5
Hammer, G. L., Van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., & Muchow, R. C. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61, 2185-2202. https://doi.org/10.1093/jxb/erq095
Heidarybeni, M., Yazdanpanh, H., & Mehnatkesh, A. (2018). Impacts of climate change on canola yields and phenology (Case study: Chahrmahal and Bakhtiari, Iran). Physical Geography Research Quarterly, 50, 373-389. (In Persian with English Summary)
Honar, T., Sabet Sarvestani, A., Kamgar Haghighi, A. A., & Shams, S. (2011). Calibration of crop system model for growth simulation and yield estimation of canola. Water Soil, 25, 593-605. (In Persian with English Summary)
Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J.W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., & Jones, J. W. (2017). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Hoogenboom, G., Wilkens, P.W., & Tsuji, G.Y. (1999). DSSAT v3, Vol. 4. University of Hawaii, Honolulu, HI.
Jing, Q., Shang, J., Qian, B., Hoogenboom, G., Huffman, T., Liu, J., Ma, B.L., Geng, X., Jiao, X., Kovacs, J., & Walters, D. (2016). Evaluation of the CSM-CROPGRO-Canola model for simulating canola growth and yield at West Nipissing in Eastern Canada. Agronomy Journal, 108, 575-584.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). DSSAT Cropping System Model. European Journal of Agronomy, 18, 235-265.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). DSSAT Cropping System Model. European Journal of Agronomy, 18, 235-265.
Kassie, B. T., Asseng, S., Porter, C. H., & Royce, F. S. (2016). Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy, 81, 27-36. https://doi.org/10.1016/j.eja.2016.08.012
Mojarrad, F., Farhadi, B., & Kheyri, R. (2014). The role of climatic factors in determining the start date of planting and growing period of colza with application of CropSyst model, Case study: Coastal provinces of Caspian Sea in Iran. Physical Geography Research, 46, 463-476. (In Persian with English Summary)
Mousavizadeh, S. F., Honar, T., & Ahmadi, S. H. (2016). Assessment of the AquaCrop Model for simulating canola under different irrigation managements in a semiarid area. International Journal of Plant Production, 10, 425-445.
Nassiri Mahallati, M. (2000). Modeling the Growth Processes of Agricultural Plants. The Publications University of Mashhad. Mashhad, Iran.
Negaresh, A. (2011). Development of oil seed cultivars. Journal of Aftabgardan, 27, 28-39. (In Persian with English Summary)
Oteng-Darko, P., Yeboah, S., Addy, S. N. T., Amponsah, S., & Owusu Danquah, E. (2013). Crop modeling: A tool for agricultural research - A review. E3 Journal of Agricultural Research and Development, 2, 1-6.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop- the FAO crop model to simulate yield response to water II. Main algorithms and software description. Agronomy Journa,. 101, 438-447. https://doi.org/10.2134/agronj2008.0140s
Rahban, S., Torabi, B., Soltani, A., & Zeinali, E. (2021). Using SSM-iCrop model to predict phenology, yield, and water productivity of canola (Brassica napus L.) in Iran condition. Journal of Agroecology, 13, 157-177. (In Persian with English Summary)
Reddy, T. Y., & Reddi, G. H. S. (2003). Principles of Agronomy. Kalyani Publishers, Ludhiana. pp. 48-77.
Robertson, M. J., Holland, J. F., Kirkegaard, J.A., & Smith, C. J. (1999). Simulating growth and development of canola in Australia. 10th International Rapeseed Congress, Canberra, Australia, CSIRO, Dickson, Australia, 26-29 September 1999, p. 245-247.
Saseendran, S. A., Nielsen, D. C., Ma, L., & Ahuja, L. R. (2010). Adapting CROPGRO for Simulating Spring Canola Growth with Both RZWQM2 and DSSAT 4.0. Agronomy Journal, 102, 1606-1621.
Saseendran, S. A., Nielsen, D. C., Ma, L., & Ahuja, L. R. (2010). Adapting CROPGRO for simulating spring canola growth with both RZWQM2 and DSSAT 4.0. Agronomy Journal, 102, 1606-1621.
Soltani, A., Hammer, G. L., Torabi, B., Robertson, M. J., & Zeinali, E. (2006). Modeling chickpea growth and development: Phonological development. Field Crops Research, 99, 1-13.
Timsina, J., Boote, K. J., & Duffield, S. (2007). Evaluating the CROPGRO soybean model for predicting impacts of insect defoliation and depodding. Agronomy Journal, 99, 148–157. https://doi.org/10.2134/agronj2005.0338
Van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., Van Walsum, P.E.V., Groenendijk, P., & Van Diepen, C.A. (1997). Theory of SWAP Version 2.0, Report #71. Department of Water Resources, Wageningen Agricultural University, pp. 167.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of American Meteorology Society, 63, 1309-1313. https://doi.org/10.1175/1520-0477
Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural System, 127, 81-89.
Zeleke, K., Luckett, D., & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103, 1610-1618.
Zomorodian, A., Kavoosi, Z., & Momenzadeh, L. (2011). Determination of EMC isotherms and appropriate mathematical models for canola. Food and Bioproducts Processing, 89, 407-413. https://doi.org/10.1016/j.fbp.2010.10.006
CAPTCHA Image