پایداری بوم‌شناختی در "بازگشت انرژی به سرمایه (EROI)" و تبیین ارتباط آن با ساختار سیمای‌سرزمین کشاورزی (مطالعه موردی: استان قزوین)

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه برنامه‌ریزی و طراحی محیط، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مداخله انسان در تغییر فرآیند­های بوم­شناختی، جریانات انرژی و هدایت آن­ها در رفع نیاز­های رشد جمعیت انسانی، فرآیندهای یکپارچه سیستم سیمای­سرزمین را تحت تأثیر قرار داده است. با افزایش تقاضای انسان، مسئله­ بهره­وری انرژی به‌عنوان یکی از ارکان اساسی زیرساخت­های اقتصادی به‌ویژه کشاورزی مطرح است. تا­کنون ارزیابی بهره­وری انرژی، در محاسبه بازده انرژی نسبت به ورودی­های سرمایه­گذاری شده خلاصه شده است که چنین نسبت ورودی­-خروجی ساده از حامل­های انرژی، به‌ناچار عملکرد داخلی سیستم را درون جعبه سیاه پنهان می­نماید. این امر جریان­های بوم­شناختی در سیستم که توسط حامل­های انرژی، دوباره به چرخه رانده می­شوند و به سرمایه برمی­گردند، را نادیده می­گیرد. شاخص پایداری بازگشت انرژی به سرمایه(EROI)  یکی از رویکرد­های نوین در این حوزه است که در تلاش برای رفع این مشکل، سیستم سیمای­سرزمین کشاورزی را به‌عنوان نهاد­ی فضایی، متشکل از حلقه­های انرژی فیمابین طبیعت و ساختاربندی جامعه انسانی می­بیند و رویکرد یکپارچه­ بوم­شناختی­-جامعه­شناختی را در تحلیل پیچیدگی سیمای­سرزمین اتخاذ می­نماید. هدف از مطالعه حاضر بررسی نظریه و روش­شناسی این رویکرد است که در استان قزوین به‌عنوان مطالعه موردی به‌تفکیک دهستان اجرا و ارتباط آن با ناهمگونی ساختار سیمای­سرزمین منبعث از برنامه­ریزی کاربری اراضی که با متریک سیمای‌سرزمین ارزیابی شده است، بررسی گردید. نتایج نشان داد که چگونه الگوهای چرخه انرژی با ناهمگونی ساختار سیمای­سرزمین هر دهستان ارتباط پیدا کرده و بهره­وری انرژی را تحت تأثیر قرار داده است. همچنین، خروجی­های همبستگی بین شاخص­های محاسبه شده بهره­وری انرژی و ناهمگونی ساختار سیمای­سرزمین، نشان می­دهد که بین این دو متغیر همبستگی معکوس برقرار است. نتایج دلالت بر سوء مدیریت سرزمین دارد، چنان‌که سازوکار چرخه­های انرژی در بستر الگوهای ناهمگونی ساختار سیمای­سرزمین منبعث از برنامه­ریزی کاربری­راضی، از سازوکار چرخه­ها­ی انرژی منبعث از الگوهای طبیعی ساختار ­سرزمین پیروی نمی­کنند. لذا، در این خصوص لازم است یا از الگوهای ناهمگنی سرزمین تقلید شود و یا از الگوهای ناهمگنی نوینی در راستای توسعه سازمان‌دهی ساختار سیمای­سرزمین استفاده گردد، به­گونه­ای که انسجام ناهمگنی فرآیندی اتخاذ شده، شرایط کاهش آنتروپی و توسعه روندهای سایبرنتیک در سازوکارهای زیستی سیمای­سرزمین را فراهم نماید. نتایج این تحقیق می‌تواند در برنامه­های آمایش سرزمین به‌منظور ادغام ملاحظات انرژی در برنامه­ریزی کاربری اراضی و مطالعات طرح جامع توسعه کشاورزی، مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Ecological Sustainability in "Energy Return on Investment (EROI) "and its Correlation with Agricultural Landscape Heterogeneity (Case Study: Qazvin Province)

نویسندگان [English]

  • Maryam Yousefi
  • Shahindokht Barghjelveh
  • Asef Darvishi
  • Naghmeh Mobargaee Dinan
Department of Planning and Design of the Environment, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Introduction
The problem of energy efficiency is one of the key pillars of economics, especially agricultural sector. In term of energy efficiency, a similar estimation for human actions and their consequents can be applied to the landscape system, which first introduced by Hall et al. (1986), and now referred to Energy Return on Investment (EROI). Many energy analyzes have been done, take into account a social system boundary and an input and output approach. This approach will inevitably hide the system's internal performance inside a black box. Recently, Tello et al. (2016) have proposed a novel approach for analyzing energy at the agricultural landscape scale with the aim of evaluating energy sustainability under multiple EROIs that views the landscape as a set of energy cycles between nature and society.
The proposes of this study have been to consideration the theory and methodology of multiple EROIs, to investigate the efficiency of energy flow in Qazvin agricultural landscape and, to examine the relationship between energy efficiency and landscape heterogeneity in order to describe the interaction of landscape structure and energy efficiency.
Materials and Methods
The database of this case study was prepared from 46 counties of Agricultural Organization of Iran and land use map. Agricultural database was created based on agriculture, livestock, and pasture subsystems. Agricultural yield for each crop, number of agricultural, and horticultural labors, number and type of agricultural machinery, amount of fertilizers, herbicides and fungicides, used fossil fuels, electricity, and agricultural waste belonged to the agricultural sub-sector. Census of livestock, livestock and poultry production, livestock and poultry feed, livestock and poultry production, workers and machinery, fossil fuel and electricity needed and livestock waste were collected for the livestock sector. Pasture production used for livestock grazing, amount of livestock manure going back to rangelands were belong to pasture sector.
All energy flows were converted to gross caloric value following research by Guzmán et al. (2014). In this method, the calculation of multiple EROIs has replaced the conventional methods of energy efficiency calculation. Landscape heterogeneity calculated using landscape metrics. Correlation coefficient was performed using SPSS between EROIs and heterogeneity.
Results and Discussion
The highest value of FEROI was found in Bashariyate Sharghi with 0.25 and the lowest was in Kharghane Gharbi with 0.018. EFEROI, which is the most similar to the conventional method of energy efficiency, had the highest rate with 0.666 in Bashariate Gharbi and the lowest rate with 0.020 in Kharqan Gharbi. IFEROI was 0.95 in Narjah and the lowest was in Shahidabad with 0.168. Lower IFEROI indicates a higher return biomass in the production system, which seeks to maintain reproduction in the system by closing the biophysical cycles. The highest NPPEROI were reported by Bashariate Gharbi at 1.122 and lowest by Kharqan Gharbi at 0.173.In this study the relationship between the EROIs index and the heterogeneity of the landscape structure was shown. The results have showed the inverse correlation between heterogeneity and energy efficiency, indicating the heterogeneous impact of landscape structure on these indicators. It can be deduced that the heterogeneity created by human in Qazvin province has reduced energy efficiency. To explain this inverse correlation between energy efficiency and the heterogeneity of the landscape, it should be noted that one of the factors affecting efficiency is that may final production come from land uses that needed more input energy and produce less output. By examining the relationship between these indices with land use and land cover of each county, it was found that these indices had their lowest level in dry farming. It means that in Qazvin province, energy efficiency in dry farming is low, and relay on external inputs, which was mainly fossil fuel.
Conclusion
This study has explained how the calculation of several energy efficiency coefficients provides more complete information than conventional methods for decision making. The results of this study can be applied in land use planning to integrate energy considerations in planning and comprehensive agricultural development plan.
 

کلیدواژه‌ها [English]

  • Biomass Reused
  • Ecological-Social System
  • Energy Efficiency
  • Landscape Ecology
Alder, D., Gao, W.D., and Khodaei, A., 2016. Energy return on investment: Impact of societal energy yields on economic sustainability. North American Power Symposium in 2016 (NAPS), p. 1-5.
Atlason, R.S., Kjærheim, K.M., Davíðsdóttir, B., and Ragnarsdottir, K.V., 2015. A comparative analysis of the energy return on investment of organic and conventional Icelandic dairy farms. Icelandic Agricultural Sciences 28: 29-42.
Balogh, S., Hall, C., Guzman, A., Balcarce, D., and Hamilton, A., 2012. The potential of Onondaga County to feed its own population and that of Syracuse New York: past, present, and future. In: Global Economic and Environmental Aspects of Biofuels. CRC Press, p. 273–320.
Bayliss-Smith, T., 1982. The Ecology of Agricultural Systems. Cambridge UniversityPress, Cambridge. P: 112.
Capellán-Pérez, I., de Castro, C., and González, L.J.M., 2019. Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Reviews 26: 100399.
Conforti, P., and Giampietro, M., 1997. Fossil energy use in agriculture: an international comparison. Agriculture, Ecosystems and Environment 65: 231–243.
Darvishi, A., Fakheran, S., Soffianian, A., and Ghorbani, M., 2014. Quantifying landscape spatial pattern changes in the caucasian black grouse (Tetrao mlokosiewiczi) Habitat in Arasbaran biosphere reserve. Iranian Journal of Applied Ecology 2(5): 27-38. (In Persian with English Summary)
Darvish, A., Ghorban, M., Fakheran, S., and Soffianian, A., 2014. Network analysis and key actors toward wildlife management (case study: habitat of Caucasian Black Grouse, Arasbaran Biosphere Reserve). Iranian Journal of Applied Ecology 3(9): 29-41. (In Persian with English Summary)
Darvishi, A., Fakheran, S., and Soffianian, A., 2015. Monitoring landscape changes in Caucasian black grouse (Tetrao mlokosiewiczi) habitat in Iran during the last two decades. Environmental Monitoring and Assessment 187(7): 1-13.
Darvishi, A., Fakheran, S., Soffianian, A., and Ghorbani, M., 2016. Change detection and land use/cover dynamics in the Arasbaran Biosphere Reserve. Journal of Natural Environment 68(4): 559-572. (In Persian)
Darvishi, A., Mobarghaee Dinan, N., Barghjelveh, S., and Yousefi, M., 2020. Assessment and spatial planning of landscape ecological connectivity for biodiversity management (Case study: Qazvin province). Iranian Journal of Applied Ecology 9(1): 15-29. (In Persian with English Summary)
Darvishi, A., Mobarghaee, N., Yousefi, M., & Barghjelveh, S., 2021. Using the method of “Effective Mesh Size” for qualitative evaluation of regional protected areas (Case study: Qazvin province). Journal of Environmental Studies 46(4): 539-554. (In Persian with English Summary)
Darvishi, A., Yousefi, M., and Marull, J., 2020. Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran). Land Use Policy 99: 105098.
Darvishi, A., Yousefi, M., and Mobarghaee Dinan, N., 2021. Evaluating the correlation between pollination ecosystem service and landscape pattern metrics (Case study: Qazvin province). Iranian Journal of Applied Ecology 10(1): 51-63. (In Persian with English Summary)
Darvishi, A., Yousefi, M., and Mobarghei Dinan, N., 2020. Investigating the effect of socio-economic disturbance resulting from human activities on landscape ecological function using HANPP index (Case Study: Qazvin Province). Journal of Natural Environment 73(3): 471-484. (In Persian with English Summary).
Darvishi, A., Yousefi, M., Mobarghei Dinan, N., and Angelstam, P., 2021. Assessing levels, trade-offs and synergies of landscape services in the Iranian province of Qazvin: towards sustainable landscapes. Landscape Ecology 36(11).
European Commission., 2013. Report from the commission to the council and the European parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2008–2011. Brussels, 4-10.
Fathi, R., Amjadpour, K., and Azizpanah, P., 2018. Pattern and efficiency of energy consumption of rainfed wheat production with the help of data envelopment analysis approach, Case study: Chardavol city, Ilam province. Iranian Rainfed Agriculture 7: 33-46. (In Persion with English Summary)
Feiz Bakhsh, M.T., Dori, M.A., and Rezvan Talab, N., 2019. Evaluation of energy indices and its impact on global warming potential for potato production: A case study, Golestan province. Journal of Agroecology 11(1): 53-65. (In Persian with English Summary)
Forman, R.T.T., 1995. Some general principles of landscape and regional ecology. Landscape Ecology 10(3): 133-142.
Gabriel, D., Sait, S.M., Kunin, W.E., Benton, T.G., 2013. Food production versus biodiversity: Ccomparing organic and conventional agriculture. Journal of Appied Ecology 50: 355–364.
Galán, E., Padró, R., Marco, I., Tello, E., Cunfer, G., Guzmán, G.I., De Molina, M.G., Krausmann, F., Gingrich, S., Sacristán, V. and Moreno-Delgado, D., 2016. Widening the analysis of energy return on investment (EROI) in agro-ecosystems: socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c. 1860 and 1999). Ecological Modelling 336: 13-25.
Giampietro, M., 1997. Socioeconomic constraints to farming with biodiversity. Agriculture, Ecosystem and Environment 62(2–3): 145–167.
Giampietro, M., Mayumi, K., and Sorman, A.H., 2013. Energy Analysis for Sustainable Future: Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism. Routledge, London.
Giampietro, M., Mayumi, K., Sorman, A.H., 2012. The Metabolic Pattern of Societies: Where Economists Fall Short. Routledge, London.
Gingrich, S., Theurl, M.C., Erb, K., and Krausmann, F., 2018. Regional specialization and market integration: Agroecosystem energy transitions in Upper Austria. Regional Environmental Change 18: 937-950.
Gökyer, E., 2013. Understanding Landscape Structure using Landscape Metrics. In: Advances in Landscape Architecture. IntechOpen. Pp: 663-677.
Gunderson, L.H., 2000. Ecological resilience—in theory and application. Annual Review of Ecology, Evolution, and Systematics 31: 25–439
Guzma´n, G.I., Alonso, AM., 2008. A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems 98: 167–176.
Guzmán, G., Aguilera, E., Soto, D., Cid, A., Infante, J., Garcia-Ruiz, R., Herrera, C., Villa, I., and González de Molina, M., 2014. Methodology and Conversion Factors toEstimate the Net Primary Productivity of Historical and ContemporaryAgroecosystems (I). Sociedad Espa˜nola de Historia Agraria-Documentos detrabajo p. 1407.
Guzmán, G.I., and González de Molina, M., 2015. Energy efficiency in agrarian systems froman agro-ecological perspective. Agroecology and Sustainable Food Systems 39: 924–952.
Guzmán, G.I., de Molina, M.G., Fernández, D.S., Infante-Amate, J., and Aguilera, E., 2018. Spanish agriculture from 1900 to 2008: A long-term perspective on agroecosystem energy from an agroecological approach. Regional Environmental Change 18: 995-1008.
Hall, C.A., 2016. Energy Return on Investment: A Unifying Principle for Biology, Economics, and Sustainability. Springer, New York. P: 174.
Hall, C.A.S., Cleveland, C.J., and Kaufmann, R., 1995. Energy and Resource Quality: The Ecology of the Economic Process, Wiley, New York. P:577, https://www.jstor.org/stable/29769810.
Hendrickson, M., and Heffernen, W., 2002. Opening spaces through relocalization: Locating potential resistance in the weaknesses of the global food system. Sociologia Ruralis 42: 347–36.
Ho, M.W., 2013. Circular thermodynamics of organisms and sustainable systems. Systems 1: 30–49.
Ho, M.W., Ulanowicz, R.U., 2005. Sustainable systems as organisms? Biosystems 82: 39–51.
Kazemi, H., Alizadeh, P., and Nehbandani, A., 2016. Investigation of energy flow in rainfed and irrigated wheat fields of Shahrekord city under two tillage methods. Agricultural Ecology 8: 281-295. (In Persian with English Summary)
Kazemi, H., and Zare, S., 2014, investigation and comparison of energy flow in wheat fields of Gorgan and Marvdasht townships. A Quarterly Journal Cereal Research 4(3): 211-227. (In Persian)
Letiao, B.A., and Ahern, J., 2002. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning 59: 65-93.
MacFall, J., Lelekacs, J.M., LeVasseur, T., Moore, S., and Walker, J., 2015. Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas. Journal of Environmental Studies and Sciences 5: 608-622.
Marco Lafuente, I., 2018. Dialogues between Nature, Class and Gender: Revisiting Socio-Ecological Reproduction from Past Advanced Organic to Industrial Agricultures (Sentmenat, Catalonia, 1860-1999). Ph.D. Dissertation, Faculty of Econmic, Univrsity of Barclona, Barclona.
Marull, J., Cattaneo, C., Gingrich, S., De Molina, M.G., Guzmán, G.I., Watson, A., MacFadyen J, Pons, M., and Tello, E., 2019. Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s. Agricultural Systems 175: 46-57.
Marull, J., Pino, J., Tello, E., and Cordobilla, M.J., 2010. Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 27: 497-510.
Medan, D., Torretta, J.P., Hodara, K., Elba, B., and Montaldo, N.H., 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodiversity and Conservation 20: 3077-3100.
Morowitz, H.J., 2002. The Emergence of Everything: How the World Became Complex. Oxford University Press, Oxford. P: 224
Mortazavi, S.A., Hezareh, R., and Mousavi, S.H., 2014, Energy Efficiency Analysis in Agriculture, Case Study: Qazvin Plain, First National Conference on Sustainable Agriculture and Natural Resources, Tehran, 30 January 2014. (In Persian)
Naveh, Z., 2000. What is holistic landscape ecology? A conceptual introduction. Landscape and Urban Planning 50: 7-26.
Odum, H.T., 1973. Environment, Power and Society. Wiley Interscience: New York, NY, USA. P: 331.
Oerke, E., Dehne, H., Schönbeck, F., and Weber, A., 1999. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam. P: 808.
Omidmehr, Z., 2019. Comparison of Energy Productivity and Global Warming Potential in Rain-fed Sunflower (Helianthus annuus L.) Production Systems. Journal of Agroecology 11(2): 739-755. (In Persian with English Summary)
Padró i Caminal, R., 2018. Agroecological Landscape Modelling as a Deliberative Tool, Learning from Social Metabolism Assessment of Historical Transitions to Industrial Agriculture for Future Sustainable Food System. Ph.D. Dissertation, Faculty of Agriculture, Univrsity of Barclona, Barclona.
Parivar, P., Yavari, A., Faryadi, S.H., and Sotoudeh, A., 2009. Landscape ecological structure analysis of Tehran to develop strategies for improving environmental quality. journal of Environmental Studies 35(50): 45-56. (In Persian with English Summary)
Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., Kramer, K., Murphy, D., Nemecek, T., and Troell, M., 2011. Energy intensity of agriculture and food systems. Annual Review of Environment and Resources 36: 223–246.
Smil, V., 2013. Harvesting the Biosphere. What we have taken from nature. MIT Press, Cambridge. P: 317.
Tello, E., Galán, E., Sacristán, V., Cunfer, G., Guzmán, G.I., De Molina, M.G., Krausmann F, Gingrich S, Padró, R., Marco, I., and Moreno-Delgado, D., 2016. Opening the black box of energy throughputs in farm systems: a decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès County, Catalonia, c. 1860 and 1999). Ecological economics 121: 160-174.
Tscharntke, T., Clough, Y., Wanger, T., Jackson, C., Motzke, L., Perfecto, M., Vandermeer, J., and Whitbread, A., 2012 a. Global food security, biodiversity conservation and the future of agricul-tural intensification. Biological Conservation 151(1): 53–59.
Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahring, L., Batáry, P., Bengtsson, J.,Clough, Y., Crist, T.O., Dormann, C.F., Ewers, R.M., Fründ, J., Holt, R.D., Holzschuh, A., Klein, A.M., Kleijn, D., Kremen, C., Landis, D.A., Laurance, W., Lindemayer, D., Scherber, C., Sofhi, N., Steffan-Dewenter, I., Thies, C., van der Putten, W.H., and Westphal, C., 2012 b. Landscape moderation of biodiversity patterns and processes—eigth hypotheses. Biological Reviews 87: 661–685.
Vafabakhsh, J., and Mohammadzadeh, A., 2019. Energy flow and GHG emissions in major field and horticultural crop production systems (Case study: Sharif Abad plain). Journal of Agroecology 11(2): 365-382. (In Persian with English Summary)
Vanwalleghem, T., Infante-Amate, J., Gonza´lez De Molina, M., Soto Ferna´ndez, D., and Go´mez, J.A., 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agriculture, Ecosystems and Environment 142:341–351
Worster, D., 1990. Transformations of the earth: toward an agroecological perspective in history. Journal of American History 76(4): 10.
Yousefi, M., Darvishi, A., Padró, R., Barghjelveh, S., Dinan, N.M., and Marull, J., 2020. An energy-landscape integrated analysis to evaluate agroecological scarcity. Science of The Total Environment 739: 139998.
Yousefi, M., Darvishi, A., Tello, E., Barghjelveh, S., Dinan, N. M., and Marull, J., 2021. Comparison of two biophysical indicators under different landscape complexity. Ecological Indicators 124: 107439.
Zahedi, M., Eshghizadeh, H., and Mondani, F., 2014. Evaluation of energy use efficiency and economical indices in safflower (Carthamus Tinctorius L.) production system in Isfahan province. Journal of Agroecology 4(2): 45-53. (In Persian with English Summary)