مطالعه تطبیقی الگوی کشت و تناسب اراضی محصولات زراعی و باغی عمده در حوضه آبریز دریاچه ارومیه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

2 گروه اگرواکولوژی، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

3 مؤسسـه تحقیقـات خـاک و آب، سـازمان تحقیقـات، آمـوزش و تـرویج کشاورزی، کرج، ایران

چکیده

طی دو دهه گذشته، دریاچه ارومیه به عنوان دومین دریاچه بزرگ شور جهان در معرض خشک شدن قرار گرفت و حجم و سطح آب آن تا 80 درصد کاهش پیدا کرد. این فرایند به عواملی نظیر تغییر اقلیم، افزایش مصرف آب در بخش کشاورزی و مدیریت نامناسب منابع آب نسبت داده شد. بنابراین، برنامه اصلاح الگوی کشت به عنوان یکی از راهکارهای احیای دریاچه ارومیه و استفاده پایدار از منابع طبیعی به ویژه آب و زمین در این حوضه مطرح گردید. در این مطالعه، به تغییرات الگوی کاشت، بهینه‌سازی الگوی کشت موجود با اهداف بیشینه‌سازی درآمد خالص، بهره‌وری اقتصادی آب و کمینه‌سازی مصرف آب و ارزیابی تناسب اراضی برای کشت محصولات زراعی و باغی عمده حوضه آبریز دریاچه ارومیه پرداخته شده است. برای ارزیابی تغییرات الگوی کشت از اطلاعات آماری وزارت جهاد کشاورزی طی سال­های 1395-1382 استفاده گردید. ارزیابی تناسب اراضی بر اساس روش پارامتریک برای 22 گیاه زراعی گندم، جو، ذرت ‌دانه‌ای، لوبیا، نخود، سویا، آفتابگردان، کلزا، گلرنگ، یونجه، سورگوم علوفه‌ای، سیب‌زمینی، هویج، پنبه، چغندرقند، سیر، توتون، گوجه فرنگی، پیاز، هندوانه، زعفران و خیار و 12 گیاه باغی بادام، زردآلو، هلو، شلیل، آلبالو، گیلاس، آلو، سیب، گلابی، انگور، گردو و پسته انجام گرفت. نتایج به دست آمده نشان داد که طی ده سال گذشته، سطح محصولات زراعی آبی در منطقه مورد مطالعه کاهش (از 357 هزار هکتار به 320 هزار هکتار) و به سطح محصولات باغی آبی افزوده (از 137 هزار هکتار به 164 هزار هکتار) شده است. مقایسه محصولات زراعی نشان می‌دهد که طی این مدت، سطح زیر کشت گندم (از حدود 151 هزار به حدود 110 هزار هکتار)، یونجه (از حدود 97 هزار به 82 هزار هکتار)، اسپرس (از حدود 15 هزار به نزدیک 5 هزار هکتار) و پیاز (از حدود 9800 به حدود 4800 هکتار) بیش از سایر محصولات کاهش پیدا کرده و سطح زیر کشت محصولاتی مانند ذرت علوفه‌ای (از 1354 هکتار به بیش از 5000 هکتار) و گوجه‌فرنگی (از 7382 هکتار به 8781 هکتار) افزایش یافته است. مقایسه محصولات باغی در دو مقطع زمانی (85-1382و 95-1392) نشان می‌دهد که سطح زیر کشت درختان سیب، انگور، بادام، گردو و زردآلو طی این دوره به ترتیب بیشترین سطح را به خود اختصاص داده‌اند. مقایسه سطح زیرکشت محصولات باغی نشان می‌دهد که سطح زیر کشت درختان سیب (از حدود 62 هزار به بیش از 69 هزار هکتار)، زردآلو (از حدود 5800 به حدود7300 هکتار)، آلو (از حدود 840 به بیش از 3000 هکتار) و هلو (از حدود 3523 هکتار به 5667 هکتار) افزایش و سطح کشت انگور (از حدود بیش از 38 هزار به حدود 34 هزار هکتار) کاهش پیدا کرده است. نتایج تناسب اراضی نشان می‌دهد که در بین محصولات زراعی مطالعه شده، گندم و جو با بیش از 375 هزار هکتار بیشترین سطح رده مناسب را به خود اختصاص داده و محصولات کلزا و یونجه با بیش از 350 هزار هزار هکتار، آفتابگردان با بیش از 340 هزار هکتار، ذرت دانه‌ای با بیش از 330 هزار هکتار و محصولات سیب‌زمینی، پیاز و گوجه‌فرنگی با حدود 330 هزار هکتار بیشترین سطح رده مناسب را به خود اختصاص می‌دهند. در بین محصولات باغی مورد مطالعه، گیلاس، آلبالو، زردآلو و سیب با بیش از 350 هزار هکتار، گردو با بیش از 340 هزار هکتار و هلو با حدود 330 هزار هکتار به ترتیب بیشترین سطح رده مناسب را به خود اختصاص می‌دهند. نتایج بهینه‌سازی الگوی کشت با در نظر گرفتن تناسب اراضی و محدودیت‌های منطقه‌ای برای محصولات باعث کاهش 7/11 درصدی در مصرف آب و افزایش 1/27 و 9/43 درصدی به ترتیب در کل درآمد منطقه و شاخص بهره‌وری اقتصادی آب در مقایسه با الگوی کشت موجود گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative Study of Cropping Pattern and Land Suitability of Major Horticultural and Field Crops in the Urmia Lake Basin

نویسندگان [English]

  • Javad Vafabakhsh 1
  • Arash Mohammadzade 2
  • Kambiz Bazargan 3
  • Mirnaser Navidi 3
1 Seed and Plant Improvement Research Department, Khorasan-Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
2 Department of Agroecology, Research Institute of Environmental Sciences, Shahid Beheshti University, Tehran, Iran
3 Soil and Water Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

Introduction
Over the last two decades, Urmia Lake, the second largest hypersaline lake by area in the world, has been largely desiccated and its water volume and surface area have declined by 80%. Generally, this process is attributed to a combination of factors including climate change, water overuse for agriculture within the lake’s watershed, and mismanagement of water resources. One of the widely suggested solutions in restoration program of Urmia lake for sustainable use of land and water resources is the modification of cropping pattern within the lake’s watershed. Land suitability analysis helps planners and policy makers in the agriculture sector in deciding on the presence or absence of a specific plant in the optimal cropping pattern. The present study analyzed the cropping pattern and evaluated land suitability for major field and horticultural crops in the Urmia lake basin.
Material and Methods
All required data were obtained from the Ministry of Agriculture - Jihad. Weighted goal programming (WGP) model was applied to optimization of cropping pattern with considering three goals including maximizing net return (NR), maximizing economic water productivity (EWP) and minimizing water consumption (WC). GAMS software were used to solve the optimization model. Land suitability evaluation was done using Parametric Method for 22 field crops including wheat, barley, grain maize, bean, soybean, sunflower, canola, safflower, alfalfa, forage sorghum, potato, carrot, cotton, sugar beet, garlic, tobacco, tomato, onion, watermelon, saffron and cucumber and 12 horticultural crops including almond, apricot, peach, nectarine, sour cherry, sweet cherry, plum, apple, pear, grape, walnut and pistachio.      
Results and Discussion
The results revealed that during the past 10 years (from 3-years average of 2004-2006 to 2014-2016), cultivated area of irrigated field crops in the study area had declined in contrast to increasing trend of cultivated area for irrigated horticultural crops. Comparison of field crops for this period shows that area of wheat (from 151000 to 110000 ha), alfalfa (from 97000 to 82000 ha), sainfoin (from 15000 to 5000 ha) and onion (from 9800 to 4800 ha) had reduced while the corn silage (from 1354 to 5000 ha) and tomato (from 7382 to 8781 ha) cultivated area had increased in that period. Comparatively, the area of apple (from 62000 to 69000 ha), apricot (from 5800 to 7300 ha), plum (from 840 to 3000 ha) and peach (from 3523 to 5667 ha) had increased between two-time interval (from 3-years average of 2004-2006 to 2014-2016) in contrast to decrement of grape (from 38000 to 34000 ha) cultivated area. Results of land suitability evaluation showed that among the studied field crops, the highest suitable order area (including S1, S2 and S3 classes) were related to wheat and barley by more than 375000 ha followed by canola and alfalfa with more than 350000 ha, sunflower with more than 340000 ha, grain maize with more than 330000 ha and potato, onion and tomato with 330000 ha. Among the horticultural crops, the highest area of suitable order was related to sweet cherry, sour cherry, apricot and apple with more than 350000 ha followed by walnut with more than 340000 ha and peach by about 330000 ha. Results of cropping pattern optimization showed that total water consumption about 378 MCM (11.7%) reduced compared to current cropping pattern however, total net return and economic water productivity increased about 27.1% and 43.9%, respectively. Crops characterized with relatively higher water requirements and lower economic benefits (viz. apricot, cotton, plum, safflower, and etc.) eliminated from cropping pattern. By contrast, area under crops such as saffron, pistachio, sorghum, sweet cherry, garlic and cucumber crops recommended to optimal cropping pattern mainly because of relatively lower water consumption and higher economic benefits. 
Conclusion
In the present study, geographical distribution of suitable areas and main limiting factors for cultivation of each crop was determined. Generally, in the optimal cropping patterns, total water consumption decreased against an increase in net return and economic water productivity.

کلیدواژه‌ها [English]

  • Crop production limiting factors
  • Goal Programming
  • Water Productivity
Ahmadaali, J., Barani, G.A., Qaderi, K., and Hessari, B. 2018. Analysis of the effects of water management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water 10: 160-181.
Alamdari, P., and Amanifar, S. 2016. Land suitability classification of East Azerbaijan research station for tomato, potato, onion and bean. International Journal of Agricultural Management and Development (IJAMAD) 6: 117-122.
Amini Fasakhodi, A., Nouri, S.H., and Amini, M. 2010. Water resources sustainability and optimal cropping pattern in farming systems; a multi-objective fractional goal programming approach. Water Resources Management 24: 4639-4657.
Ayoubi, S.H., and Jalalian, A. 2010. Land Evaluation (Agricultural and Natural Resources). Isfahan University of Technology Publication Isfahan, Iran. (In Persian)
Daneshi, A., Vafakhah, M., and Panahi, M. 2016. Economic Assessment of Change in Cropping Pattern in Siminehrud Sub-basin to Improve Agricultural Water Management: An Effort to Restore Urmia Lake Using PES Scheme. Iran-Water Resources Research 11: 57-68. (In Persian with English Summary)
Dumanski, J., Bindraban, P.S., Pettapiece, W., Bullock, P., Jones, R.J., and Thomasson, A. 2010. Land classifications, sustainable land management, and ecosystem health. Interdisciplinary and Sustainability Issues in Food and Agriculture 3: 244-266.
El Gafy, I., Grigg, N., and Reagan, W. 2017. Water-food-energy nexus index to maximize the economic water and energy productivity in an optimal cropping pattern. Water International 42: 495-503.
FAO. 1976. A framework for land evaluation. Food and Agriculture Organization of the United Nations, Rome, Italy, p. 71.
FAO. 1993. Guidelines for land use planning. Food and Agriculture Organization of the United Nations, Rome.
Gupta, M., and Bhattacharjee, D. 2012. Two weighted fuzzy goal programming methods to solve multiobjective goal programming problem. Journal of Applied Mathematics 1-20.
Hadi, H., Azadi Mobaraki, M., and Sanaei Ghehi, M. 2016. Grape Production Constraints in Terms of Climatic Elements and Land Physical Factors Using AHP Model in GIS Environment (Case Study: East Azarbaijan Province). Journal of Agricultural Science and Sustainable Production 26: 159-172. (In Persian with English Summary)
Hesami, A., and Amini, A. 2016. Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake and Reservoir Management 32: 288-296.
Huang, J., Ridoutt, B.G., Xu, C., Zhang, H., and Fu, C. 2012. Cropping pattern modifications change water resource demands in the Beijing metropolitan area. Journal of Integrative Agriculture 11: 1914-1923.
Isanezhad, R., Zarifian, S., Raheli, H., Kouhestani, H., and Beheshti Nahand, S. 2015. Assessing the effects of optimal cropping pattern in Lake Urmia basin on restoration of Lake Urmia. GMP Review 18: 464-468.
Jafarzadeh, A., Alamdari, P., Neyshabouri, M., and MRN, S.S. 2008. Land suitability evaluation of Bilverdy Research Station for wheat, barley, alfalfa, maize and safflower. Soil and Water Research 3: 81-88.
Jafarzadeh, A.A., and Abbasi, G. 2006. Qualitative land suitability evaluation for the growth of onion, potato, maize, and alfalfa on soils of the Khalat pushan research station. Biologia 61: 349-352.
Jamshidi, K. 2017. Identifying suitable areas for Table Grape cultivation in Boukan Using GIS. Pomology Research 2: 17-40. (In Persian with English Summary)
Jayaraman, R., Colapinto, C., La Torre, D., and Malik, T. 2017. A Weighted goal programming model for planning sustainable development applied to Gulf Cooperation Council Countries. Applied Energy 185: 1931-1939.
Kalbouneh, S. 2011. Cropping patterns as a tool for water resource management in Palestine: date palm cultivation in Jiftlik, Jordan Valley. International Journal of Environmental Studies 68: 447-460.
Kelley, H.W. 1983. Keeping the land alive: soil erosion- its causes and cures. Food and Agriculture Organization of the United Nations Rome.
Li, X., Kang, S., Niu, J., Du, T., Tong, L., Li, S., and Ding, R. 2017. Applying uncertain programming model to improve regional farming economic benefits and water productivity. Agricultural Water Management 179: 352-365.
Ministry of Agriculture-Jahad. 2005-2016. Agricultural Statistics. (In Persian)
Ministry of Energy. 2012. Water master plan studies in the form of integrated water resources management: Urmia lake basin. Missions of Bureau, p. 275. (In Persian)
Mohammadi, H., Sargazi, A., Dehbashi, V., and Poudineh, M. 2016. Optimization of Cropping Pattern with an Emphasis on Social Benefits in the Rational Exploitation of Water (A Case study of Fars Province). Journal of Environmental Science and Technology 17: 107-115.
Naraghi, M., Akbari, G.A., and Banihabib, M.E. 2015. Optimal cropping pattern of Urmia lake basin. The first international and the fourth national conference of IRANs Environmental and Agricultural Research, Hamedan, Iran, pp. 1-9. (In Persian)
Pakpour Rabati, A., Jafarzadeh, A., Shahbazi, F., and Ammary, P. 2013. Assessment of Susceptible Land for Some Agricultural Crops in Some Regions of West Azerbaijan Province using Geographical Information System. Journal of Water and Soil Science 23: 65-76.
Pal, B.B., Goswami, S.B., Sen, S., and Banerjee, D. 2012. Using fuzzy goal programming for long-term water resource allocation planning in agricultural system: a case study. Mathematical Modelling and Scientific Computation. Springer, pp. 170-184.
Pal, B.B., and Kumar, M. 2014. Extended Goal Programming Approach with Interval Data Uncertainty for Resource Allocation in Farm Planning: A Case Study. ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol I. Springer, pp. 639-651.
Rabati, A.P., Jafarzadeh, A., Shahbazi, F., Rezapour, S., and Momtaz, H. 2012. Qualitative and quantitative land-suitability evaluation for sunflower and maize in the north-west of Iran. Archives of Agronomy and Soil Science 58: 1229-1242.
Regulwar, D., and Gurav, J. 2014. Irrigation Planning with Fuzzy Parameters: An Interactive Approach. Journal of Agricultural Science and Technology 16: 1157-1172.
Rodrigues, G.C., and Pereira, L.S. 2009. Assessing economic impacts of deficit irrigation as related to water productivity and water costs. Biosystems Engineering 103: 536-551.
Rouw, M. 2017. Socially navigating through the Urmia Lake debate: Framing analysis of a shrinking salt lake in north-western Iran. Water Resources Management Group. Wageningen University, Netherlands, p. 52.
Saed, B., Afshar, A., Jalali, M., Ghoreishi, M., and Aminpour Mohammadabadi, P. 2019. A Water Footprint Based Hydro-Economic Model for Minimizing the Blue Water to Green Water Ratio in the Zarrinehrud River-Basin in Iran. AgriEngineering 1: 58-74.
Shokati, B., Asgharipour, M., Ghanbari, A., and Feizizadeh, B. 2016. Suitability assessment of Saffron cultivation using GIS based multi-criteria decision analysis approach; Study area: East-Azerbaijan province. Desert 21: 115-131.
Singh, A. 2017. Optimal allocation of water and land resources for maximizing the farm income and minimizing the irrigation-induced environmental problems. Stochastic Environmental Research and Risk Assessment 31: 1147-1154.
Sobhani, B., and Azarm, K. 2016. Assessing ability of land for planting canola in West Azerbaijan Province using multi-criteria decision-making approaches. Water and Soil Science 26: 27-41.
Soil and Water Research Institute. 2018a. Crop requirements of field crops. Karaj, Iran. (In Persian)
Soil and Water Research Institute. 2018b. Crop requirements of horticultural crops. Karaj, Iran. (In Persian)
Soil and Water Research Institute. 2018c. Phenology of field crops by provinces. Karaj, Iran. (In Persian)
Soil and Water Research Institute. 2018d. Phenology of horticultural crops by provinces. Karaj, Iran. (In Persian)
Sun, S., Wu, P., Wang, Y., and Zhao, X. 2015. Impact of changing cropping pattern on the regional agricultural water productivity. The Journal of Agricultural Science 153: 767-778.
Sys, C., Van Ranst, E., and Debaveye, J. 1991. Land evaluation. Part II: Methods in land evaluation. General Administration for Development Cooperation, Brussels, Belgium.
Sys, C., Van Ranst, E., Debaveye, J., and Beernaert, F. 1993. Land evaluation part III, crop requirements. General Administration for Development Cooperation, Brussels, Belgium.
Urmia Lake Restoration Program. 2015. Urmia Lake drying reasons and probable treats. Iran, pp. 1-50. (In Persian)
Urmia Lake Restoration Program. 2017. Challenges of Urmia Lake and Restoration Program. 76. (In Persian)
Urmia Lake Restoration Program. 2019. About Urmia Lake Basin. (In Persian)
Vafabakhsh, J. 2016. Priciples of crop planning in water defficit condition in Iran. In: Koocheki, A., Khajeh Hosseini, M. (Eds.), Water deficit crop production in Iran: Strategies and applications. Mashhad Jahad-e-Daneshgahi Press, Mashhad, p. 616. (In Persian)
Youneszadeh Jalili, S., Kamali, M., and Daneshkar Arasteh, P. 2017. Analytical Study of Land Use Changes (Irrigated Agriculture) in the Watershed of Lake Urmia using Landsat Imagery. JWSS-Isfahan University of Technology 20: 15-28. (In Persian with English Summary)
Zangeneh, M., Omid, M., and Akram, A. 2010. A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran. Energy 35: 2927-2933.
Zarinkafsh, M. 2008. The Evaluation of Land Suitability, Classification and Capability. Jahangir Publication, Tehran. (In Persian)
Zeng, X., Kang, S., Li, F., Zhang, L., and Guo, P. 2010. Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management 98: 134-142.
Ziaei Javid, A. 2014. Qualitative land suitability classification for major crop products in Tabriz plain, Eastern Azerbaijan Province, Iran. International Journal of Agriculture and Crop Sciences (IJACS) 7: 620-623.
CAPTCHA Image