ارزیابی اثرات زیست محیطی تولید ذرت علوفه‌ای (Zea mays L.) در خراسان جنوبی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه کشاورزی، دانشگاه پیام نور، تهران ، ایران

2 دانشیار گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 گروه ترویج و آموزش کشاورزی، دانشکده کشاورزی، دانشگاه بو علی سینا همدان، ایران

4 گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

این مطالعه با هدف ارزیابی اثرات زیست‌محیطی تولید ذرت علوفه‌ای (Zea mays L.) در استان خراسان جنوبی انجام شده است. برای این منظور از رویکرد ارزیابی چرخه حیات (LCA) استفاده و برای ارائه نتایج کاربردی‌تر و همچنین تخمین ظرفیت کاهش اثرات زیست محیطی با تکنیک تحلیل فراگیر داده‌ها ترکیب شد. اطلاعات مورد نیاز با استفاده از پرسشنامه و مصاحبه رو در رو با کشاورزان و کارشناسان کشاورزی گردآوری و با استفاده از بسته نرم‌افزاری DEAP2.1 , Simapro7 تجزیه و تحلیل شد. اثرات زیست‌محیطی برای تولید یک تن ذرت علوفه‌ای و با استفاده از روش IMPACT 2002+ که 15 شاخص اثر میانی و چهار شاخص اثر پایانی را شامل می‌شود، ارزیابی شد. نتایج کارایی نشان داد میانگین کارایی فنی و کارایی خالص فنی و کارایی مقیاس به‌ترتیب 80/0، 93/0 و 86/0 است. نتایج ارزیابی چرخه حیات نشان داد بیشترین بار محیطی در کشت ذرت علوفه-ای مربوط به شاخص مواد آلی غیر تنفسی و پس از آن شاخص‌های اثر گرمایش جهانی، انرژی تجدیدناپذیر و مواد سرطان‌زا در رده‌های بعد قرار دارند. ارزیابی طبقات آسیب نشان داد که بیشترین تأثیر بر روی شاخص سلامتی انسان بوده و شاخص تغییرات اقلیم و منابع در رده‌های بعدی قرار دارند. نتایج‌ شاخص‌های اثر در صورتی‌که واحد‌های ناکارا با اصلاح الگوی مصرف خود را به مرز کارایی برسانند، بین 28/3 درصد (اثر مواد سرطان‌زا) تا 25/28 (مسمومیت خاکی) درصد کاهش خواهند یافت. شاخص‌های اثر استخراج مواد معدنی با 01/25 درصد کاهش و اشغال زمین و امواج یونیزه کننده با 81/20 درصد پس از شاخص اثر مواد سرطان‌زا بیشترین میزان کاهش را نشان دادند. همچنین در بین نهاده های تولید الکتریسیته، کود حیوانی و انتشارات دورن سیستمی مهمترین نقش را در تأثیرات زیست محیطی تولید ذرت علوفه‌ای در منطقه داشتند. اصلاح نظام آبیاری و سیستم پمپاژ آب به منظور کاهش مصرف آب و الکتریسیته و همچنین ترغیب و آگاهی بخشی به کشاوزان در جهت استفاده بهینه از کودهای شیمیایی و استفاده از کود سبز به جای سایر کودها به منظور کاهش اثرات زیست محیطی تولید ذرت علوفه‌ای در منطقه توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluate the Environmental Impact of Silage Corn Production in South Khorasan Province

نویسندگان [English]

  • Seyed Mohammad Jafar Esfahani 1
  • karim naderi mahdei 2
  • Heshmatollah Saadi 3
  • Arash Dourandish 4
1 Department of Agriculture, Payame Noor University(PNU), Tehran, Iran
2 , Department of Agricultural Extension and Education, Faculty of Agricultural, Bu- Ali Sina University, Hamedan, Iran
3 Department of Agricultural Extension and Education, Faculty of Agriculture, University of Bu-Ali Sina, Hamedan, Iran
4 Department of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

Introduction
The discussions on environmental sustainability have eventually come to include agricultural products in recent years. LCA is an ISO-standardized method, in which an inventory is used to determine the inputs and emissions associated with each stage of production life cycle and to express their quantitative share in a specific impact category. Southern Khorasan Province is the most eastern province in Iran. Drought and increased price of forage in this province have turned the growing of silage corn into an economical attraction for this province. Consequently, it is necessary to environmentally evaluate this crop in order to have more comprehensive understanding of its production, in addition to its economical evaluation. In this study was tried to examine the environmental impacts of silage corn production by an integrated LCA and DEA method to better understand its production and to recommend approaches for mitigating its environmental impacts.
Materials and Methods
Data were collected by questionnaire and face-to-face interviews with farmers and agriculture experts and analyzed using DEAP2.1 and Simapro software. An LCA project has four phases include goal and scope definition, life cycle inventory analysis, life cycle impact assessment, and Interpretation. An important part of goal and scope definition is to select system boundaries. The focus of the present study is on production phase and on-farm processes. In fact, farm gate is selected as system boundary and all of environmental impact estimated for the production of one tone of product. Various methods have been introduced by different institutions and countries for environmental impacts assessment. One of them is IMPACT 2002+ method which is a combination of three methods of IMPACT 2002, Eco-Indicater 99andCML. This method is selected because it assesses 15 impact indicators, and it assesses four end point indicators (damage category) by combining these impact indicators. The consumption of inputs within the studied system boundary will result in direct emission of pollutants into air, water and soil. These emissions have been calculated according to the literature.
Results and Discussion
Results for efficiency showed that mean technical efficiency, pure technical efficiency and scale efficiency were 0.80, 0.93, and 0.86, respectively. In CCR mode, 13 units and in BCC mode, 22 units were efficient. Technical efficiency varied in 0.33-1 range with 0.20 SE. The lowest pure technical efficiency was 0.64 with 0.10 SE. If inefficient units could approach efficiency boundary by adjusting their consumption pattern, the results for impact categories could be reduced by 3.2-28.2%. The lowest reduction( 3.3%) was the indicator of carcinogens, and the highest reduction ( 28.2%) was terrestrial ecotoxicity followed by mineral extraction with 25.01% reduction and land occupation and ionizing radiation with 20.8% reduction. Normalized results showed that the highest environmental burden in silage corn production was related to Respiratory inorganics followed by global warming, non-renewable energy and carcinogens. Environmental burden of electricity had the highest impact on environment pollution in five impact indicators (carcinogens, non-carcinogens, aquatic toxicity, global warming, and non-renewable energies). The assessment of damage categories revealed that the highest effect was on human health and then, on climate change and resources. Electricity, manure and on system emissions also played the most important role in environmental impacts of silage corn production in this region.
Conclusions
According to the results of the present study on the one hand and the necessity for silage corn production in the region to meet livestock sector’s demand on the other hand, reform in irrigation system and water pumping system to reduce water and electricity use as well as motivating farmers to analyze soil to determine the optimum fertilization rate and increasing their understanding of how to apply this input are the most important factors to reduce environmental impacts of silage corn production in the region.

کلیدواژه‌ها [English]

  • Data envelopment analyzes
  • life cycle assessment
  • Silage corn
  • South Khorasan
Aghasafari, H., and Ghorbani, M. 2015. Whether Farmers are willing to financial participation for reducing the adverse environmental effects of contaminated water? (A case study of Kashaf- Rood Basin in Mashhad). Journal of Agroecology 7(2): 202-214. (In Persian with English Summary)
Azizi, H., and Fathi Ajirloo, S. 2010. Measurement of overall performances of decision-making units using ideal and anti-ideal decision-making units. Computers and Industrial Engineering 59: 411-418.
Azizi, H., and Wang, Y. 2013. Improved DEA models for measuring interval efficiencies of decision-making units. Measurement 463: 1325-1332.
Banker, R.D., Charnes, A., and Cooper, W.W. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30(9): 1078-1092.
Bolandnazar, E., Keyhani, A., anf Omid, M. 2014. Determination of efficient and inefficient greenhouse cucumber producers using data envelopment analysis approach, a case study: Jiroft city in Iran. Journal of Cleaner Production 79: 108-115.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20: 247-264.
Buonocore, E., Vanoli, L., Carotenuto, A., and Ulgiati, S. 2015. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 86: 476-487.
Cederberg, C., and Mattsson, B. 2000. Life Cycle Assessment of milk production a comparison of conventional and organic farming. Journal of Cleaner Production 8(1): 49-60.
Charnes, A., Cooper, W.W., and Rhodes, E. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2(6): 429-444.
Dalgaard, R., Schmidt, J., Halberg, N., Christensen, P., Thrane, M., and Pengue, W.A. 2008. LCA of soybean meal. International Journal of Life Cycle Assessment 13(3): 240-254.
Del Borghi, A., Gallo, M., Strazza, C., and Del Borghi, M. 2014. An evaluation of environmental sustainab ility in the food industry through Life Cycle Assessment: the case study of tomato products chain. Journal of Cleaner Production 78: 121-130.
Ebrahimi, R., and Salehi, M. 2015. Investig ation of CO2 emission reduction and improving energy use efficiency of button mushroom production using Data Envelopment Analysis. Journal of Cleaner Production 103: 112-119.
Faist Emmenegger, M. C., Reinhard, J., and Zah, R. 2009. SQCB - sustainability quick check for biofuels. In Termediate Background Report. Dübendorf.
Galanopoulos , K., Aggelopoulos , S., Kamenidou , I., and Mattas , K. 2006. Assessing the effects of managerial and production practices on the efficiency of commercial pig farming. Agricultural Systems 88(2-3): 125-141.
Goedkoop, M., and Spriensma, R. 2001. The Eco-Indicator99: A Damage Oriented Method for Life Cycle Impact Assessment: Methodology Report.
Guinee, J.B. 2001. Life Cycle Assessment: An Operational Guide to the ISO Standards. Leiden: Centre of Environmental Science, Leiden University, Leiden, Holland
Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A., de Oers, L.F.C.M., van Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, H., de Duin, R., van & Huijbregts, M.A. 2002. Life Cycle Assessment: An Operational Guide to the ISO Standards. Dordrecht, The Netherlands.: Kluwer Academic Publishers.
Heidari, M.D., Omid, M., and Mohammadi, A. 2012. Measuring productive efficiency of horticultural greenhouses in Iran: A data envelopment analysis approach. Expert Systems with Applications 39(1): 1040-1045.
Heller, M.C., and Keoleian, G.A. 2011. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States. Environmental Science and Technology 45(5): 1903-1910.
Humbert, S., De Schryver, A., Margni, M., and Jolliet, O. 2012. IMPACT 2002+: User Guide. Draft for Version Q. 2.
Humbert, S., Marshall, J.D., Shaked, S., Spadaro, J.V., Nishioka, Y., Preiss, P., McKone, T.E., Horvath, A., and Jolliet, O. 2011. Intake fractions for particulate matter: Recommendations for life cycle impact assessment. Environmental Science and Technology 45: 4808-4816.
IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18(4): 336-345.
Iribarren, D., Martin-Gamboa, M., and Dufour, J. 2013. Environmental benchmarking of wind farms according to their operational performance. Energy 597(61): 589.
Iribarren, D., Vazquez-Rowe, I., Moreira, M.T., and Feijoo, G. 2010. Further potentials in the joint implementation of life cycle assessment and data envelopment analysis. Science of The Total Environment 408(22): 5265-5272.
Iribarren, D., Hospido, A., Moreira, M.T., and Feijoo, G. 2011. Benchmarking environmental and operational parameters through eco-efficiency criteria for dairy farms. Science of The Total Environment 409(10): 1786-1798.
ISO. 2006. ISO 14040 - Environmental Management – Life Cycle Assessment – Principles and Framework. ISO.
Keyes, S., Tyedmers, P., and Beazley, K. 2014. Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canad a, through life cycle assessmen t. Journal of Cleaner Production 104: 40-51.
Khakbazan, M., Mohr, R.M., Derksen, D.A., Monreal, M.A., Grant, C.A., Zentner, R.P., Moulin, A.P., McLaren, D.L., Irvine, R.B., and Nagy, C.N. 2009. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat–pea cropping system in the Canadian prairies. Soil and Tillage Research 104: 30-38.
Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H.R., Anuar, N.B., and Mat Kiah, M.L. 2015. Decreasing environmental impacts of cropping systems using life cycle assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner Production 86: 67-77.
Khoshnevisan, B., Rafiee, S., and Mousazadeh, H. 2013. Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy 50: 29-37.
Khoshnevisan, B., Rafiee, S., Omid, M., and Mousazadeh, H. 2014. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production 183-192.
Khoshnevisan, B., Rajaeifar, M.A., Clark, S., Shamahirband, S., Anuar, N.B., Mohd Shuib, N.L., and Gani, A. 2014. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of The Total Environment 481: 242-251.
Knudsen, M.T., Yu-Hui, Q., Yan, L., and Halberg, N. 2010. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark: a case study. Journal of Cleaner Production 18(14): 1431-1439.
Ministry of Agriculture Jihad of Iran. 2015. Annual Agricultural Statistics.
Mobtaker, H.G., Akram, A., and Keyhani, A. 2012. Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development 16: 84-89.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Dalgaard, T., Knudsen, M.T., Nguyen, T.L.T., Borek, R., Hermansen, J.E. 2015. Joint Life Cycle Assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production 106: 521-532.
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval, S.H., and Hermansen, J.E. 2013. Potential greenhouse gas emission reductions in soybean farming: a combined use of Life Cycle Assessment and data envelopment analysis. Journal of Cleaner Production 54: 89-100.
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., and Nonhebel, S. 2014. Energy use efficiencyand greenhouse gas emissions of farming systems in north Iran. Renewable & Sustainable Energy Reviews 30: 724-733.
Mohamad, R.S., Verrastro, V., Cardone, G., Bteich, M.R., Favia, M., Moretti, M., and Roma, R. 2014. Optimization of organic and conventional olive agricultural practices from a Life Cycle Assessment and Life Cycle costing perspectives. Journal of Cleaner Production 70: 78-89.
Mousavi-Avval, S.H., Rafiee, S., Jafari, A., and Mohammadi, A. 2011. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 36(5): 2765-2772.
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., and Mobtaker, H.G. 2014. Optimization of energ y required and greenhouse gas emissions analysis for orange producers using data envelopme nt analysis approach. Journal of Cleaner Production 65: 311-317.
Nemecek, T., and Kagi, T. 2007. Life cycle inventories of agricultural production systems. Eco Invent Report No. 15 Dübendorf, CH. Swiss Centre for Life Cycle Inventories.
Nemecek, T., and Schnetzer, J. 2011. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems. Zurich: Agroscope Reckenholz-Tänikon Research Station ART.
Nemecek, T., Bengoa, X., Lansche, J., Mouron, P., Rossi, V., and Humbert, S. 2014. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. Version 2.0. World Food LCA Database (WFLDB)., Zurich, Switzerland.
Nemecek, T., Huguenin-Elie, O., Dubois, D., Gaillard, G., Schaller, B., and Chervet, A. 2011. Life Cycle Assessment of Swiss farming systems: II. Extensive and intensive production. Agricultural Systems 104(3): 233-245.
Nemecek, T., Julian, S., and Jürgen, R. 2014. Updated and harmonised greenhouse gas emissions for crop inventories. The International Journal of Life Cycle Assessment p. 1-18.
Nguyen, T., and Hermansen, J.E. 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Applied Energy 89(1): 254-261.
Nikkhah, A., Taheri-rad, A., Khojastehpour, M., Emadi, B., and Payman, H. 2014. Environmental impacts of peanut production in astaneh ashrafiyeh of Guilan Province. Journal of Agroecology 6(2): 373-382. (In Persian with English Summary)
Pennington, D.W., Margni, M., Amman, C., and Jolliet, O. 2005. Multimedia fate and human intake modeling: spatial versus non-spatial insights for chemical emissions in Western Europe. Environmental Science and Technology, 39(4): 1119-1128.
Pennington, D., Margni, M., Payet, J., and Jolliet, O. 2006. Risk and regulatory hazard based toxicological effect indicators in Life Cycle Assessment (LCA). Human and Ecotoxicological Risk Assessment Journal 12: 450-475.
Perez Gil, M., Contreras Moya, A.M., and Dominguez, E.R. 2013. Life Cycle Assessment of the cogeneration processes in the Cuban sugar industry. Journal of Cleaner Production 41: 222-231.
Phong, L.T., de Boer, I.M., and de Boer, H.J. 2011. Life Cycle Assessment of food production in integrated agriculture–aquaculture systems of the Mekong Delta. Livestock Science 139: 80-90.
Pishgar Komleh, S.H., Keyhani, A., Rafiee, S., and Sefeedpary, P. 2011. Energy use and econom ic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 36: 3335-3341.
Pishgar-Komleh, S.H., Ghahderijani, M., and Sefeedpari, P. 2012. Energy consumption and CO4 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production 33: 183-191.
PRe, V.A. 2016. SimaPro Database Manual Methods Library.
Rafiee, S., Khoshnevisan, B., Mohammadi, I., Aghbashlo, M., Mousazadeh, H., and Clark, S. 2016. Sustainability evaluation of pasteurized milk production with a Life Cycle Assessment approach: An Iranian case study. Science of The Total Environment 562: 614-627.
Rahmani, M., Jami Al-Ahmadi, M., Shahidi, A., and Hadizadeh Azghandi, M. 2016. Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand plain). Journal of Agroecology 7(4): 443-460. (In Persian with English Summary)
Rajaeifar, M.A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., and Rafiee, S. 2015. Comparative Life Cycle Assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews 51: 886-8998.
Safa, M., and Samarasinghe, S. 2012. CO2 emissions from farm inputs “Case study of wheat production in Canterbury, New Zealand”. Environmental Pollution 171: 126-132.
Salehi, M., Ebrahimi, R., Maleki, A., and Mobtaker, H.G. 2014. An assessme nt of energy modelin g and input costs for greenho use button mushroom production in Iran. Journal of Cleaner Production 64: 377-383.
Soltani, A., Rajabi, M.H., Zeinali, E., and Soltani, E. 2013. Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran. Energy 50: 54-61.
Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G., Jolliet, O., Klann, U., Krewitt, W., Moriguchi, Y., Munksgaard, J., and Norris, G. 2004. System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches. Environmental Science & Technology 38: 657-664.
Tabatabaie, S.H., Rafiee, S., and Keyhani, A. 2012. Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy 44(1): 211-216.
Tabatabaie, S.M., Rafiee, S., Keyhani, A., and Heidari, M. 2013. Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran. Renewable Energy 51: 7-12.
Vazquez-Rowe, I., and Iribarren, D. 2011. Computation of operational and environmental benchmarks within selected galician fishing fleets. Journal of Industrial Ecology 15(5): 776-795.
Vazquez-Rowe, I., Villanueva-Rey, P., Iribarren, D., Moreira, M.T., and Feijoo, G. 2012. Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rias Baixas appellation (NW Spain). Journal of Cleaner Production 27: 92-102.
Yousefi, M., Khoramivafa, M., and Mondani, F. 2014. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment 92: 501-505.
CAPTCHA Image