ارزیابی و کمّی‌سازی خدمات بوم‌سازگان در کشت‌بوم گندم (Triticum aestivum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

نظام­های زراعی انواع خدمات تأمینی، حمایتی، تنظیمی و فرهنگی را به جوامع انسانی ارائه می­دهند. در این مطالعه خدمات تأمینی، حمایتی، تنظیمی در کشت‌بوم‌های گندم (Triticum aestivum L.)  شرکت زراعی دشت ناز ساری (استان مازندران) در سال زراعی 99-1398 ارزیابی و کمّی­سازی شد. قطعات تحت کشت گندم شامل چهار رقم تیرگان، احسان، کلکتور و N-92-9 بودند که به‌عنوان تیمارهای آزمایش در نظر گرفته شد. در این مطالعه، انواع خدمات بوم­سازگانی شامل تنوع زیستی حشرات و گیاهان هرز از زیرمجموعه خدمات حمایتی با استفاده از شاخص­های شانون-واینر، سیمپسون، مارگالف، یکنواختی و منهنیک، خدمات تنظیمی با استفاده از نمایه­های تنفس میکروبی خاک، ترسیب کربن، فراوانی کرم خاکی، ماده آلی، پایداری خاکدانه­ها، تولید اکسیژن و خدمات تأمینی شامل عملکرد دانه و میزان پروتئین دانه ارزیابی و کمّی‌سازی شدند. برای تعیین میزان تنفس میکروبی، ماده آلی و ترسیب کربن، نمونه­های خاک قبل از کشت گندم در آبان 1398 و پس از برداشت آن در خرداد 1399 از عمق 0-30 سانتی­متری برداشت شدند. تولید اکسیژن بر اساس تولید خالص اولیه برآورد گردید. داده­های آزمایش به‌صورت طرح کاملاً تصادفی نامتعادل تجزیه شدند. نتایج نشان داد که بیشترین میزان خدمت تولید اکسیژن حدود 43/13 تن در هکتار و عملکرد دانه گندم حدود 84/4 تن در هکتار از رقم کلکتور حاصل گردید. بالاترین درصد پروتیئن دانه از زیرمجموعه خدمات تأمینی، به‌میزان 15/12 درصد به رقم احسان اختصاص یافت. در این پژوهش، بیشترین میزان ترسیب کربن (33/2 تن در هکتار) و فعالیت تنفس میکروبی قبل از کشت و بعد از برداشت محصول به‌ترتیب به‌میزان 46/76 و 52/38 میلی‌گرم 2CO به‌ازای هر کیلوگرم خاک در روز، به قطعه 15 تعلق داشت. ارزیابی وضعیت تنوع زیستی در حشرات و گیاهان هرز نشان داد که بیشترین میزان شاخص تنوع شانون- واینر و شاخص یکنواختی در گیاهان هرز به‌ترتیب به‌میزان 63/2 و 82/0 از قطعات 23 و 15 به‌دست آمد و همچنین شاخص شانون- واینر و شاخص یکنواختی جوامع حشرات به‌ترتیب به‌میزان 07/2 و 94/0 برای قطعه 22 محاسبه شد. به­طور کلی، ارایه خدمات ترسیب کربن، ماده آلی، تنفس میکروبی، فراوانی کرم خاکی و پایداری خاکدانه­ها بر اساس شاخص‌های میانگین وزنی قطر  (MWD)و میانگین هندسی قطر (GMD) در قطعات 14 و 15 تحت کشت گندم بهتر از سایر قطعات بود. نتایج این مطالعه نشان داد که مدیریت زراعی و اجرای نظام کشاورزی فشرده، بر ارائه بسیاری از خدمات بوم­سازگان در مزارع گندم در منطقه دشت ناز ساری تأثیرگذار بود، به‌طوری‌که این خدمات تحت تأثیر عواملی متعددی مانند رقم زراعی، تناوب زراعی، روش­های خاکورزی و غیره قرار گرفتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Quantification of Ecosystem Services in Wheat (Triticum aestivum L.) Agroecosystem

نویسندگان [English]

  • Mostafa Koozehgar 1
  • Hossein Kazemi 2
  • Behnam Kamkar 1
  • Hamid Amirnejad 3
  • Mohsen Hosseinali Zadeh 4
1 Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran
2 Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran
3 Department of Agricultural Economics, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran
4 Department of Desert Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Introduction
Ecosystem services are usually divided into four categories: (a) provision services, (b) regulating services, (C) cultural services and (d) supporting services. Ecosystem services are managed in agroecosystems primarily for food production. But, agricultural ecosystems provide provision, regulating and cultural services for human society. These services respond strongly to human socio-economic needs. Quantifying the various services and functions of agroecosystems is one of the most important effective strategies in order to increase attention pay to these services. Therefore, the purpose of this study was evaluation and quantification of ecosystem services in wheat (Triticum aestivum L.) agroecosystems of Dasht-e-Naz, Sari.
Materials and Methods
This experiment was performed as an unbalanced completely design in wheat agroecosystems of Dasht-e-Naz, Sari (Mazandaran province), during 2019-2020. In this study, 9 wheat plots with 4 cultivars including Tirgan, Ehsan, Collector and N-92-9 were surveyed and monitored. In this study, some ecosystem services such as insect and weed biodiversity (using Shannon-Weiner, Simpson, Margalf, Uniformity and Menhinick indices), soil microbial respiration, carbon sequestration, organic matter, abundance of earthworms, grain yield, protein content oxygen production, and soil protection (by the stability of aggregates) were evaluated and quantified. Soil samples were taken from a depth of 0-30 cm before wheat planting in November 2019 and after harvest in June 2020 for assessment of rate of microbial respiration, organic matter and carbon sequestration. Also, oxygen production was estimated based on net primary production. Sampling of yield and plant biodiversity was harvested based on W pattern and with quadrate 0.5 × 0.5 m2. All samples were moved to the crop research laboratory of Gorgan University of Agricultural Sciences and Natural Resources and the plant flora was determined by genus and species names.
Results and Discussion
The results showed that crop management and performance of intensive agricultural system were effective on providing many services of ecosystems in wheat fields of Dasht-e-Naz, Sari. These services are influenced by several factors such as cultivar type, crop rotation, tillage, etc. The results showed that the effect of different cultivars was significant on grain yield and protein percentage. The highest percentage of grain protein as a provision service was obtained from Ehsan cultivar (12.15%) and the lowest content was obtained about 11.42% from N-92-9 cultivar. The highest wheat grain yield and oxygen production were calculated from plots under Collector cultivar. In additional, the highest amount of carbon sequestration (2.33 ton/ha) and microbial respiration rate in before planting and after harvest (76.46 and 38.52 mg CO2 per kg of soil per day, respectively) belonged to plot 15. Also, it was determined that plot 15 was better than other plots from soil protection service view based on the diameter mean weight index (MWD) and the geometric mean diameter index (GMD). In this research, three beneficial insects (biodiversity assessment) were observed such as Coccinella septempunctata Linnaeus and Aphidius matricariae, and Chrysoperla carnea. The highest values of Shannon-Weiner and uniformity indices of weeds were as 2.63 and 0.82 in plots 23 and 15, respectively. Furthermore, Shannon-Weiner and uniformity indices of insect communities were obtained as 2.07 and 0.94 from plot 22, respectively.
Conclusion
 Generally, carbon sequestration, organic matter, microbial respiration, earthworm abundance, aggregate stability index, average weight diameter (MWD) and geometric mean diameter index (GMD) were better in plots 14 and 15 under wheat cultivation  than other plots. The results of this study showed that crop management and implementation of intensive agricultural system were effective in providing many ecosystem services in wheat fields in Dasht-e Naz region of Sari. So that, these services were affected by several factors such as cultivar, crop rotation and tillage methods.
Acknowledgment
The authors gratefully acknowledge the financial support of Gorgan University of Agricultural Sciences and Natural Resources and Dr. Hamid Sakinin for his help.

کلیدواژه‌ها [English]

  • Biodiversity
  • Carbon sequestration
  • Oxygen production
  • Provisioning services
  • Regulation service
  • Wheat
  1. Alaru, M., Laur, U., & Jaama, E. (2003). Influence of nitrogen and weather conditions on the grain quality of winter triticale. Agricultural Research,. 1(1), 3-10.
  2. Balzan, M.V., Pinheiro, A.M., Mascarenhas, A., Morán-Ordóñez, A., Ruiz-Frau, A., Carvalho-Santos, C., Vogiatzakis, I., Arends, J., Santana-Garcon, J., Roces-Díaz, J.V., Brotons, L., Campagne, C.S., Roche, P.K., Miguel, S., Targetti, S., Drakou, E.G., Vlami, V., Baró F., & Geijzendorffer, L.R. (2019). Improving ecosystem assessments in Mediterranean social-ecological systems: A DPSIR analysis. Ecosystems and People. 15: 136–155. DOI: https://doi.org/10.1080/26395916.2019.1598499
  3. Barzegar, A. (2001). Advanced Soil Physics. First Edition, Shahid Chamran University, Ahvaz, Iran, Pp. 434. (In Persian)
  4. Benton, T.G., Vickery, J.A., & Wilson, J.D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? TRENDS in Ecology and Evolution. 18: 182–188.
  5. Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., & Roger-Estrade, J. (2015a). Earthworm services for cropping systems. A review. Agronomy for Sustainable Development. 35: 553–567. DOI: https://doi:10.1007/s13593-014-0269-7.
  6. Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., & Wilke, B.M. (2010). Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil and Tillage Research. 109: 133–143. DOI: https://doi:10.1016/j.still.2010.05.010
  7. Bijl, D.L., Bogaart, P.W., Dekker, S.C., Stehfest, E., de Vries, B. J. M., & Van Vuuren, D.P. (2017). A physically-based model of long-term food demand Global Environmental Change. 45: 47–62. DOI: https://doi:1016/j.gloenvcha.2017.04.003
  8. Blesh, J., & Drinkwater, L.E. (2013). The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin. Ecological Society of 23(5): 1017–1035. DOI: https://doi:10.1890/12-0132.1
  9. Bojarszczuk, J., KsięŻak, J., & Gałązka, A. (2017). Soil respiration depending on different agricultural practices before maize sowing. PlantSoil and Environment.63: 435–441. DOI: https://doi:10.17221/597/2017-PSE
  10. Buchs, W. (2003). Biotic indicators for biodiversity and sustainable agriculture. Elsevier Science Ltd. pp. 560. Amsterdam. https://www.elsevier.com/books/biotic-indicators-for-biodiversity-and-sustainable-agriculture/buchs/978-0-444-51551-3
  11. Cao, S., Suo, X., Xia, C., Yu, Z., & Feng, F. (2020). Net value of forest ecosystem services in China. Ecological Engineering. 142: 1-7. DOI: https://doi:10. 1016/j. ecole ng. 2019. 105645
  12. Chen, J., Yu, L., Yan, F., & Zhang, S. (2020). Ecosystem service loss in response to agricultural expansion in the small Sanjiang Plain, Northeast China: process, driver and management. Sustainability. 12(2430): 2-14. DOI: https://doi:10. 3390/ su120 62430.
  13. Clark, M., &Tilman, D. (2017). Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environmental Research Letters. 12(6): 1-11. DOI: https://doi:10.1088/1748-9326/aa6cd5
  14. Cole, L.J., Kleijn, D., Dicks, L.V., Potts, S.G., Albrecht, M., Balzan, M.V., Bartomeous, I., Bebeli, P.J., Bevk, D., Biesmeijer, J.C., Chlebo, R., Dautartė, A., Emmanouil, N., Hartfield, Anželika Dautartė C., Holland, J.M., Holzschuh, A., Knoben, N.T.J., Kovács-Hostyánszki, A., Mandelik,Y., Panou, H., Paxton, R.J., Petanidou, T., Pinheiro de Carvalho, M.A.A, Rundlöf, M., Sarthou, J.P., Stavrinides, M.C., Suso, M.J., Szentgyörgyi, H., Vaissière, B.E., Varnava, A., Vilà, M., Zemeckis, R., & Scheper, J. (2020). A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology. 57(4): 681-694. DOI:  https://doi:10.1111/1365-2664.13572
  15. Colman, C.B., Oliveira, P.T.S., Almagro, A., Soares-Filho, B.S., & Rodrigues, D.B. (2019). Effects of climate and land-cover changes on soil erosion in Brazilian pantanal. Sustainability. 11(7053): 1-16. DOI:https://doi:10.3390/su11247053
  16. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Suttonkk, P., & Van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature. 387: 253–260.
  17. Dainese, M., Martin, E.A., Aizen, M.A., Albrecht M, Bartomeus, I., & Bommarco, R. (2019). Aglobal synthesis reveals biodiversity-mediated benefits for crop production. Science Advances. 5(0121): 1-13. DOI: https://doi:1126/sciadv.aax0121.
  18. de Groot, R., Brander, L., Van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L.C., ten Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1: 50–61. DOI: https://doi:10.1016/j.ecoser.2012.07.005
  19. Del Rio, T., Willemen, L., Vrieling, A., & Nelson, A. (2020). Understanding intra-annual dynamics of ecosystem services using satellite image time series. Remote sensing. 12(710): 1–19. DOI: https://doi:10. 3390/ rs120 40710.
  20. Drinkwater, L.E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature. 396: 262.
  21. Dudley, N., & Alexander, S. (2017). Agriculture and biodiversity: A review. Biodiversity. 18: 45–9. DOI: https://doi:10.1080/14888386.2017.1351892
  22. Duguma, M., Feyssa, D., & Biber-Freudenberger, L. (2019). Agricultural biodiversity and ecosystem services of major farming systems: a case study in Yayo Coffee Forest Biosphere Reserve. Southwestern Ethiopia, Agriculture. 9(48): 1-26. DOI: https://doi:10. 3390/ agric ultur e9030 048.
  23. Duru, M., & Therond, O. (2015). Designing agroecological transitions: A review. Agronomy for Sustainable Development. 35: 1237–1257. DOI: https://doi.org/10.1007/s13593-015-0318-x.
  24. Edmeades, D.C. (2003). The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems. 66(2): 165–180. DOI: https://doi:1023/A:1023999816690
  25. Imami, M.S., & Arbabi, M. (2005). Study of European red predatory insects in Semirom, Isfahan and biological study of Mulsant gilvifrons Stethorus in the laboratory. Iranian Journal of Biology. 18(2): 157-116. (In Persian)
  26. Isermeyer, H. (1952). Eine einfache method zur bestimmang der bodenatmung under carbonate im Boden. Z P Flanzenernaehr Bodenkd. 56: 26-38.
  27. Fiebig, M., & Poehling, H. M. (1998). Hostplant selection and population dynamics of the grain aphid Sitobion avenae (F.) on wheat infected with Barley Yellow Dwarf Virus. IOBC/WPRS Bulletin. 21: 51-62.
  28. Frazao, J., de Goede, R.G.M., Brussaard, L., Faber, J.H., Groot, J.C.J., & Pulleman, M.M. (2017). Earthworm communities in arable fields and restored field margins, as related to management practices and surrounding landscape diversity. Agriculture, Ecosystems and Environment. 248: 1–8. DOI: https://doi:10.1016/j.agee.2017.07.014.
  29. Galhena, D.H., Freed, R., & Maredia, K.M. (2013). Home gardens: A promising approach to enhance household food security and wellbeing. Agriculture and Food Security.2(8): 1-13. DOI: https://doi:1186/2048-7010-2-8
  30. Goldsmith, S., 2007. Density of long horned beetles (Coleoptera: Cerambycidae) differs at different elevations in Hawaiian montane forest. The Southwestern Naturalist. 52: 364-370. DOI: https://doi:10.1894/0038-4909(2007)52[364:DOLBCC]2.0.CO;2
  31. Hajek, A.E. (2004). Natural enemies: An introduction to biological control. Pest Management Science. 61: 378. DOI: https://doi:10.1002/ps.1020
  32. He, F., Shi, L.L., Tian, J.C., & Mei, L.J. (2021). Effects of long-term fertilisation on soil organic carbon sequestration after a 34-year rice-wheat rotation in Taihu Lake Basin. PlantSoil and Environment. 67: 1–7. DOI: https://doi:10.17221/478/2020-PSE
  33. Holland, J.M. (2004). The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems and Environment. 103: 1–25. DOI: https://doi:10.1016/j.agee.2003.12.018
  34. IPBES, 2019. Global assessment report on Biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Bonn) (https://ipbes. net/global-assessment-report-biodiversity-ecosystemservices) DOI: https://doi:10.5281/zenodo.3553579 
  35. Kemper, W.D., & Rosenau, R.C. (1986). Aggregate stability and size distribution. In Klute (ed.) Methods of Soil Analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA, Madison, WI. p. 425–442.
  36. Kay, B.D. (2000). Soil Structure, in: Handbook of Soil Science. CRC Press, E. M. Sumner, (Ed.), USA: F.I., Boca Raton. p. 229–264.
  37. Khorramdel, S., Rezvani Moghaddam, P., & Amin Ghafori, A. (2018). Economic evaluation of agroecosystem services of saffron in the Khorasan Razavi province. Saffron Agronomy and Technology. 6(1): 73-89.
  38. Khosravi Mashizi, A., Heshmati, G.A., Salman Mahini, A.R., & Escobedo, F.J. (2019). Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in southeast Iran. Ecological Indicators. 98: 794–803. DOI: https:// doi. org/ 10. 1016/j. ecoli nd. 2018. 11. 065
  39. Koocheki, A., Nassiri Mahallati, M., Amin Ghafouri, A., Mahlojirad, M., & Fallahpour, F. (2017). Economic value of agroecosystem services within wheat fields in Khorasan Razavi province. Journal of Agroecology. 8(4): 612-627. (In Persian with English Summary)
  40. Kong, D., Liu, N., Wang, W., Akhtar, K., Li, N., Ren, G., Feng, Y., & Yang, G. (2019). Soil respiration from fields under three crop rotation treatments and three straw retention treatments. PLoS ONE. 14(9): 1-2 DOI: https://doi:10.1371/journal.pone.0219253
  41. Kremen, C., & Miles, A. (2012). Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society. 17(4): 40-65. DOI: https://doi:10.5751/ES-05035-170440
  42. Lamarque, P., Meyfroidt, P., Nettier, B., & Lavorel, S. (2014). How ecosystem services knowledge and values influence farmers’ decisionmaking. PLoS One 9: 1-16. DOI: https://doi:10.1371/journal. pone.0107572.
  43. Lambin, E.F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity Proc. National Academy of 108(9): 3465–3472. DOI: https://doi:10.1073/pnas.1100480108
  44. Longato, D., Gaglio, M., Boschetti, M., & Gissi, E. (2019). Bioenergy and ecosystem services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based assessment method. Journal of Cleaner Production. 237: 1-42. DOI: https://doi:10. 1016/j. jclep ro. 2019. 117672
  45. Ma, S., Swinton, SM., & Lupi, F. (2012). Farmer’s willingness to participate in paymentfor-environmental-services programmes. Journal of Agricultural Economics. 63(3): 604–626. DOI: https:// doi.org/10.1111/j.1477-9552.2012.00358.x
  46. Maeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science. 296: 1694–1697. DOI: https://doi: 10.1126/science.1071148.
  47. Mada, D., Duniya, N., & Adams, I.G. (2013). Effect of continuous application of herbicide on soil and environment with crop protection machinery in Southern Adamawa state. International Journalof Engineering Science. 2(6): 4-9.
  48. Meeran, M., Fathima, S., Priya, S., Arivoli, S., & Tennyson, S. (2021). Assessment of insect diversity in paddy fields of Uthamapalayam, Theni district, Tamil Nadu, India. Journal of Wildlife and Biodiversity. 5(2): 88-98. DOI: https://doi:10.22120/jwb.2020.135814.1183
  49. Moushani, S., Kazemi, H., Hermann Klug, H., Asadi, M.E., & Soltani, A. (2021). Ecosystem service mapping in soybean agroecosystems. Ecological Indicators.121: 1-12. DOI: https://doi:10.1016/j.ecolind.2020.107061
  50. Mujib Haqqadam, Z., Jalali Sandi, J., Sadeghi, S.A., & Yousefpour, M. (2009). Introduction of Oenopia conglobata (L.) as a predator of elm aphid Tinocallis Nevsky in Guilan province and its biological study in laboratory conditions. Iranian Journal of Biology. 22(2): 370-363. (In Persian with English Summary)
  51. Magurran, A.E. (1988). Ecological Diversity and its Measurements. New Jersey, NJ: Princeton University Press. pp. 179. DOI: https://doi.org/10.1007/978-94-015-7358-0
  52. Mahmoudi, Q., Jafari, L., & Khorram Del, S. (2014). Evaluation of ecological indicators of dill weed diversity under the influence of planting date and weed control stage. First International Congress, 13th National Congress of Crop Science and Plant Breeding, and 3rd Conference on Seed Technology. pp. 1-5.
  53. Marshall, E.J.P., Brown, V.K., Boatman, N.D., Lutman, P.J.W., Squire, G.R., & Ward, L.K. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Research. 43: 77-89. DOI: https://doi:10.1046/j.1365-3180.2003.00326.x
  54. Meehan, T.D., Werling, B.P., Landis, D.A., & Gratton, C. (2011). Agricultural landscape simplification and insecticide use in the Midwestern United States. PNAS 108: 11500–11505.  DOI: https://doi:10.1073/pnas.1100751108.
  55. Méral, P., & Pesche, D. (2016). Les services écosystémiques. Repenser les relations nature et société.Versailles: Quae, 304 p. (Nature et Société). DOI: https://doi:10.35690/978-2-7592-2470-8
  56. MEA, (Millennium Ecosystem Assessment). (2003). Ecosystems and Human wellbeing: A Framework for Assessment. World Resources Institute, Washington, D.C.pp. 266.
  57. (2005). Ecosystems and human well-being, 1st Ed. Washington: Island Press. 64 p.
  58. Merrill, S.D., Tanaka, D.L., Krupinsky, J.M., Liebig, M.A., & Hanson, J.D. (2007). Soil water depletion and recharge under ten crop species and applications to the principles of dynamic cropping systems. Agronomy Journal. 99(4): 931–938. DOI: https://doi:10.2134/agronj2006.0134s
  59. Menhinick, E.F. (1964). A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology. 45(4): 859-861. DOI: https://doi:10.2307/1934933
  60. McDaniel, M.D., Tiemann, L.K., & Grandy, A.S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications. 24(3): 560-70. DOI: https://doi: 10.1890/13-0616.1.
  61. Morán‐Ordóñez, A., Whitehead, A.L., Luck., G.W., Cook, G.D., Maggini, R., Fitzsimons, J.A., & Wintle, B.A. (2017). Analysis of trade‐offs between biodiversity, carbon farming and agricultural development in northern Australia reveals the benefits of strategic planning. Conservation 10(1): 94–104. DOI: https://doi: 10.1111/conl.12255
  62. Nieto-Romero, M., Oteros-Rozas, E., González, J.A., & Martín-López, B. (2014). Exploring the knowledge landscape of ecosystem services assessments in Mediterranean agroecosystems: Insights for future research. Environmental Science and Policy.37: 121-133. DOI: https://doi:1016/j.envsci.2013.09.003
  63. Obrycki, J.J., & Orr, C.J. (1990). Suitability of three species for nearctic population of Coccinella septempunctata, Hippodamia variegata, and Propylea quatuordecimpunctata. Journal of Economic Entomology. 83(4): 1292-1297. DOI: https://doi: 1093/jee/83.4.1292
  64. Palomo, I., Felipe-Lucia, M.R., Bennett, E.M., Martín-López, B., & Pascual, U. (2016). Disentangling the pathways and effects of ecosystem service co-production. Advances in Ecological Research 54: 245–283. DOI: https://doi:10.1016/bs.aecr.2015.09.003
  65. Paustian, K., Collins, H.P., & Paul, E.A. (1997). Management controls on soil carbon. In: Paul, E.A., Paustian, K., Elliott, E.T. and Cole, C.V., Eds., Soil Organic Matter in Temperate Agroecosystems Long-Term Experiments in North America, CRC Press, New York, 15-49.
  66. Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2014). Pesticides and earthworms. A review. Agronomy for Sustainable Development. 34: 199–228. DOI: https://doi:10.1007/ s13593-013-0151-z.
  67. Pielou, E.C. (1934). The life forms of plants and statistical plant geography. Oxford: Clarendon Press.pp. 632.
  68. Pimentel, D., & Wheeler, A.G. (1973). Species and diversity of arthropods in the alfalfa community. Environmental Entomology. 2(4): 659-668. DOI: https://doi:10.1093/ee/2.4.659
  69. Pinheiro, E.F.M., Pereira, M.G., & Anjos, L.H.C. (2004). Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil and Tillage Research. 77: 19–84. DOI: https://doi:10.1016/j.still.2003.11.005
  70. Potapov, P., Hansen, M. C, Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., Zhuravleva, I., Komarova, A., & Minnemeyer, S. (2017). The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advance. 3(1): 1-13. DOI: https://doi:1126/sciadv.1600821
  71. Prokopyeva, K., Romanenkov, V., Sidorenkova, N., Pavlova, V., Siptits, S., & Krasilnikov, P. (2021). The Effect of crop rotation and cultivation history on predicted carbon sequestration in soils of two experimental fields in the Moscow region, Russia. Agronomy. 11(226): 1-20. DOI: https://doi:10.3390/ agronomy11020226
  72. Qi, Y.C., Wang, Y.Q., Liu, J., Yu, X.S., & Zhou, C.J. (2011). Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index. Trans CSAE. 27: 340–347.
  73. Rezaei, M., Talebi Jahromi, K., Kharazi Pakdel, A., & Heydari, H. (2004). Side effects of three pesticides on the eggs of Chrysoperla carnea (Stephen.) Neuroptera: Chrysopidae). Iranian Plant Protection Congress. p. 206. (In Persian)
  74. Rosina, K., Acquah, L.D., Henaku, O.E., Sigismund, A.R., & Ntiamoa, B.Y. (2014). Insect diversity of the Muni-Pomadze Ramsar site: An important site for biodiversity conservation in Ghana. Journal of Insects. 1: 1-11. DOI: https://doi:10.1155/2014/985684
  75. Roucoux, K.H., Lawson, I.T., Baker, T.R., Del Castillo Torres, D., Draper, F.C., Lähteenoja, O., Gilmore, M.P., Honorio Coronado, E.N., Kelly, T.J., & Mitchard, E.T.A. (2017). Threats to intact tropical peatlands and opportunities for their conservation. Conservation Biology. 31 (12): 83–92. DOI: https://doi:10.1111/cobi.12925
  76. Rusch, A., Chaplin-Kramer, R., Gardiner, M., & Hawro, V. (2016). Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture Ecosystems and Environment. 221: 198–204. DOI: https://doi: 10.1016/j.agee.2016.01.039
  77. Rutgers, M., Orgiazzi, A., Gardi, C., Römbke, J., Jänsch, S., Keith, A.M., Neilson, R., Boag, B., Schmidt, O., Murchie, A.K., Blackshaw, R.P., Pérès, G., Cluzeau, D., Guernion, M., Briones, M.J.I., Rodeiro, J., Piñeiro, R., Díaz Cosín, D.J., Sousa, J.P., Suhadolc, M., Kos, I., Krogh, P.H., Faber, J.H., Mulder, C., Bogte, J.J., van Wijnen, H.J., Schouten, A.J., & de Zwart, D. (2016). Mapping earthworm communities in Europe. Applied Soil Ecology. 97: 98–111. DOI: https://doi:10.1016/j.apsoil.2015.08.015.
  78. Tixier, P., Peyrard, N., Aubertot, J.N., Gaba, S., Radoszycki, J., & Caron-Lormier, G. (2013). Modelling interaction networks for enhanced ecosystem services in agroecosystems. Advances in Ecological Research. 49: 437–480. DOI: https://doi:10.1016/B978-0-12-420002-9.00007-X.
  79. Sanderman, J., Hengl, T., & Fiske, G.J. (2017). Soil carbon debt of 12000 years of human land use Proc. National Academyof  114: 9575–9580. DOI: https://doi:10.1073/pnas.1706103114  
  80. Savopoulous, S.M., Papadopoulos, N.T., Panagiotis, M., & Pascal, M. (2012). Abiotic factors and insect abundance. Psyche. A Journal of Entomology. 1: 1-2. DOI: https://doi:10.1155/2012/167420
  81. Seifert, C.A., Michael, J.R., & Lobell, D.B., 2017. Continuous Corn and Soybean Yield Penalties across Hundreds of Thousands of Fields. Agronomy Journal. 109(2): 541-548. DOI: https://doi:10.2134/agronj2016.03.0134 
  82. Scow, K.M. (1997). Soil microbial communities and carbon flow in agro ecosystems. In: Jackson LT, editor. Ecology in agriculture. San Diego, CA: Academic press pp. 367-413.
  83. Shannon, C. E., & Weiner, W. (1949). The mathematical theory of communication. University IIlinois Press, Urbana, IL: The University of Illinois Press. pp. 1-117
  84. Simpson, E. H. (1949). Measurement of diversity. Nature. 163:688. https://doi:10.1038/163688a0
  85. Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry.32(14): 2099–2103. DOI: https://doi:10.1016/S0038-0717(00)00179-6
  86. Stary, P. (1999). Aphid Parasitoides of Centeral Asian Area.Pub. House of Czech.144 pp.
  87. Stelzl, M., & Devetak, D. (1999). Neuroptera in Agricultural ecosystem. Agriculture, Ecosystem and Environment. 74:305-321.
  88. Strong, D.R., Lawton, J.H., & Southwood, R. (1984). Insects on Plants: Community Patterns and Mechanisms. Blackwell Scientific Publications, Oxford.
  89. Su, F. L., Zhao, G. H., Wang, T. L., Li, H. F., & Li, Y. M. (2017). Characteristics of surface soil macro aggregates under different land use patterns. Pratacultural Science. 34: 924–931
  90. Sun, Q., Qi, W., & Yu, X. (2021). Impacts of land use change on ecosystem services in the intensive agricultural area of North China based on Multi-scenario analysis. Alexandria Engineering Journal.60(1):1703–1716. DOI: https://doi:10. 1016/J. AEJ. 2020. 11. 020
  91. Thornes, J. (2010). Atmospheric Services. In: Hester, R.E., Harrison, R.M. (Eds.), Ecosystem service. The Royal Society of Chemistry Publishing, England Atmospheric Services. pp. 70–104.
  92. Walkley, A., & Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method Soil Science. 37: 29-38.
  93. Well, R.R. (1982). Maize-weed competition and soil erosion in unweeded maize. Tropical Agriculture. 59: 207-213.
  94. West, T.O., & Post, W.M. (2002). Soil organic carbon by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal. 66(6):1930-1946. DOI: https://doi:10.2136/sssaj2002.1930
  95. William, F. L., (2002). Lady beetles. Ohio State University Extension Fact Sheet, Horticulture and Crop Science. Division of Wildlife, 2021 Coffey Rd. Columbus, Ohio-43210-1086
  96. Wossink, A., & Swinton, S.M. (2007). Jointness in production and farmers' willingness to supply non-marketed ecosystem services. Ecological Economics64(2):297-304. DOI: https://doi:10.1016/j.ecolecon.2007.07.003
  97. Valizadeh, M., & Moghadam, M. (2002). Experimental Designs in Agriculture. Prior Publications.pp. 468.
  98. Van Capelle, C., Schrader, S., & Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biota – a review with a focus on German data. European Journal of Soil Biology50: 165–181. DOI: https://doi:1016/j.ejsobi.2012.02.005
  99. Van Driesche, R. G., & Bellows, T. S. (1996). Biological Control. Chapman & Hall, New York.pp. 539.
  • Van Groeningen, J.W., Lubbers, I.M., Vos, H.M.J., Brown, G.G., De Deyn, G.B., & van Groeningen, K.J. (2014). Earthworms increase plant production: a meta-analysis. Scientific Reports. 4: 63-65. DOI: https://doi:1038/srep06365
  • Vargas, L. E. P., Laurance, W. F., Clements, G. R., & Edwards, W. (2015). The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Tropical Conservation Science. 8 (3): 828-845 DOI: https://doi:10.1177%2F194008291500800317
  • Wolda, H., & Fisk, F.W. (1981). Seasonality of tropical insects. II. Blattaria in Panama. Journal of Animal Ecology. 50: 827-838. DOI: https://doi:10.2307/4140
  • Xu, Q., Chen, Q., Zhao, S., Liu, K., & Ma, J. (2018). Saving water and associated energy from distribution networks by considering landscape factors in pressure management and use of district metered areas. Journal of Environmental Informatal. 31(1): 65–73. DOI: https://doi:10.3808/jei.201700361
  • Xu, SQ., Zhang, M.Y., Zhang, H.L., Chen, F., Yang, G.L., & Xiang, X.P. (2013). Soil organic carbon stocks as affected by tillage systems in a double-cropped rice field. Pedosphere. 23(5): 696–704. DOI: https://doi:1016/S1002-0160(13)60062-4
  • Yang, Y., Wang, K., Liu, D., Zhao, X., & Fan, J. (2020). Effects of land-use conversions on the ecosystem services in the agro-pastoral ecotone of Northern China. Journal of Cleaner 249: 119360. DOI: https://doi:10. 1016/j. jclep ro. 2019. 119360
  • Zhang, W., Ricketts, T., Kremen, C., Carney, K., & Swinton, S. (2007). Ecosystem services and dis-services to agriculture. Ecological Economics. 64(2): 253–260. DOI: https://doi:10.1016/j.ecole con.2007.02.024
  • Zhang, X.F., Zhu, A.N., & Zhang, J.B. (2015). The long-term effect research of various tillage managements on the soil aggregates and organic carbon in Fluvo-Aquic Scientific Reports.48: 4639–4648. DOI: https://doi:10.1038/s41598-019-57193-1
  • Zhang, P., Huang, G., An, C., Fu, H., Gao, P., Yao, Y., & Chen, X. (2019). An integrated gravity-driven ecological bed for wastewater treatment in subtropical regions: Process design, performance analysis, and greenhouse gas emissions assessment. Journal of Cleaner Production. 212: 1143–1153. DOI: https://doi:1016/j.jclepro.2018.12.027
  • Zhong, L., Wang, J., Zhang, X., & Ying, L. (2020). Effects of agricultural land consolidation on ecosystem services: trade-offs and synergies. Journal of Cleaner Production. 264: 1-11. DOI: https://doi:10.1016/j.jclep ro.2020.121412
CAPTCHA Image