ارزیابی بهبود عملکرد گندم دیم (Triticum aestivum L.) با استفاده از مایه تلقیح باکتری‌های محرک رشد

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مؤسسـه تحقیقـات خـاک و آب، سـازمان تحقیقـات، آمـوزش و تـرویج کشاورزی، کرج، ایران

2 مؤسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، مراغه، ایران

3 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، سنندج، ایران

4 معاونـت مؤسسـه تحقیقـات کشـاورزی دیـم کشـور، سـازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

5 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کهگیلویه و بویراحمد، ایران

6 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

7 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایلام، ایران

چکیده

به­منظور ارزیابی اثر باکتری‌های محرک رشد گیاه در افزایش عملکرد گندم (Triticum aestivum L.) دیم، آزمایشی در قالب طرح بلوک‌های کامل تصادفی با 15 باکتری محرک رشد با یک شاهد در چهار تکرار و در شش ایستگاه تحقیقات کشاورزی دیم مراغه، قاملو، سرارود، گچساران، خدابنده و شیروان چرداول در سال زراعی 89-1388 به‌اجرا در آمد. نتایج نشان داد، تلقیح باکتری‌های محرک رشد توانست عملکرد دانه گندم دیم را در هر شش ایستگاه افزایش دهد که این افزایش در اغلب مکان‌های آزمایشی از لحاظ آماری معنی‌دار بود. حداکثر افزایش عملکرد دانه در مراغه، کرمانشاه، کردستان، ایلام، زنجان و گچساران به­ترتیب به‌میزان 6/19، 1/45، 4/12، 4/18، 2/10 و 6/11 درصد بود که متوسط این افزایش برای مطلوب‌ترین باکتری‌های محرک رشد در مناطق مورد مطالعه 382 کیلوگرم در هکتار بود. با روش GGE بای‌پلات باکتری‌های محرک رشد به دو گروه دارای عملکرد بالا (تیمارهای شماره 2، 3، 6، 8، 9 و 10) و پائین (تیمارهای شماره 1، 4، 5، 7، 11، 12، 13، 14، 15 و 16) و مکان‌های مورد مطالعه به سه گروه (گروه اول کردستان و گچساران، گروه دوم مراغه، زنجان و ایلام و گروه سوم کرمانشاه) تفکیک شد. مناسب‌ترین تیمار برای گروه کردستان و گچساران شماره 9، برای مراغه، زنجان و ایلام شماره 2 و برای کرمانشاه شماره 5 بود، امّا چنانچه هدف معرفی تنها یک باکتری‌ محرک رشد برای کل مناطق باشد، مایه تلقیح شماره 9 مناسب‌ترین است. بنابراین استنباط می‌شود، از باکتری‌های محرک رشد می‌توان در بهبود عملکرد گندم دیم در دیمزارهای ایران استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Yield Enhancement by Application of Plant Growth Promoting Rhizobacterial (PGPR) Inoculants in Dryland Wheat (Triticum aestivum L.)

نویسندگان [English]

  • Kazem Khavazi 1
  • Vali Feizi Asl 2
  • Mohammad Hossein Sedri 3
  • Aliashraf Taliee 4
  • Jafar Ghohargani 5
  • Mohammad Ismaili 6
  • Reza Solaiman 7
1 Soil and Water Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
2 Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
3 Research Center for Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Kurdistan, Iran.
4 Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran.
5 Research Center for Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), kohgiluyeh and boyer-ahmad, Iran.
6 Research Center for Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran
7 Research Center for Agriculture and Natural Resources, Agricultural Research, Education and Extension Organization (AREEO), Ilam, Iran.
چکیده [English]

Introduction
The explosion of world population in recent decades has caused excessive application of chemical fertilizers in agricultural systems; resulting in critical environmental and health issues. Integrated Nutrient Management (INM) method or biofertilizers are considered as logical strategies to reduce the rate of chemical fertilizers. . Biofertilizers consist of various types of microorganisms in soil which are in close relation with plant roots and are called Plant Growth Promoting Rhizobacteria (PGPR). Several mechanisms have been postulated to explain how PGPR benefit the host plant, which could be classified into four categories a) The ability to produce plant growth regulators or phytohormones such as indole acetic acid (IAA), cytokines, and gibberellins; b) Enhancing a symbiotic N2 fixation; c) Solubilizing inorganic phosphate and mineralization of organic phosphate and/or other nutrients; d) Antagonistic effect against phytopathogenic microorganisms by production of siderophores, the synthesis of antibiotics, enzymes, and/or fungicidal compounds, and competition with detrimental microorganisms. Therefore, PGPR are commonly used as inoculants for improving the growth and yield of agricultural crops, however screening for the selection of effective PGPR strains is very critical. This study focuses on the screening of effective PGPR strains on the basis of their potential for plant growth promoting activity under water stress conditions in Iran's cold temperate and warm dryland areas.
Materials and Methods
Experiments were carried out in randomized complete block design (RCBD) with four replications in 2009-2010 cropping year. Treatment included fifteen PGPRs with a control (without inoculation) in six dryland agricultural research stations; including Maragheh, Ghamloo (Kurdistan), Sararood (Kermanshah), Gachsaran, Khodabandeh (Zanjan), Shirvan Chardavol (Ilam). Soil samples collected from 0-25 cm depths before planting time and was characterized through determination of soil available P, K, Fe, Mn, Zn and Cu, soil texture, organic carbon, pH, EC and calcium carbonates equivalent. Dryland wheat Azar2 cultivar was cultivated with 350 seed per m2 in 5 to 7 cm soil depth. Moreover,plant traits such as grain, straw and biological yields, TKW (1000-kernel weight), number of spikes per m2, number of seed per spike, harvest index (HI), plant height and spike length, were measured. All research data was analyzed via GenStat14 statistical software.
Results and Discussion
The results showed that, the plant growth promoting bacteria (PGPR) had increased the grain yield of dryland wheat in the Maragheh, Kermanshah, Kurdistan, Ilam, Zanjan and Gachsaran regions. This increase in most experimental dryland stations has been significant statistically. The maximum grain yield increase in Maragheh, Kermanshah, Kurdistan, Ilam, Zanjan and Gachsaran were in the order amount of 19.6 (treatment no. 2), 45.1 (treatments no's 4 and 12), 12.4 (treatment no 8), 18.4 (treatment no 11) 10.2 (treatment no. 11) and 11.6 (treatment no. 11) kg.ha-1, which was 382 kg.ha-1 for the best average plant growth promoting bacteria in all the study regions. With the use of GGE biplot method, the inoculating treatments of plant growth promoting bacteria had 2 groups, including the high yielding groups with treatments (2, 3, 6, 8, 9 and 10), and low yielding treatments (1, 4, 5, 7, 11, 12. 13, 14, 15 and 16).The study locations were separated in 3 groups, first group including; Gachsaran and Kurdistan regions, second group including; Maragheh, zanjan and Ilam regions, and the third group including; Kermanshah region. The suitable treatments were the treatment numbers 9 and 10 for the first group, treatment numbers 2, 3, 8 and 6 for the second group and treatment numbers 7, 4 and 5 for the third group. Among the mentioned treatments, the most suitable treatments for first, second and third groups are treatment number 9, treatment number 2 and number 5, respectively.. According to these results, if the first aim is introducing the growth promoting bacteria for all the regions, this strain is the inoculating bacteria number 9. In the second order, the treatment numbers 13 and 10had the closest conditions to the estimated ideal treatment.
Conclusion
Therefore, for the plant growth promoting bacteria, we can use them in reducing the effects of environmental stresses, and conducting non-environmental stresses on dryland conditions, as well as increasing in grain yield of dryland wheat.
 

کلیدواژه‌ها [English]

  • GGE biplot
  • Seed inoculation
  • Yield improvement
Barbieri, P., and Galli, E., 1993. Effect on wheat root development of inoculation with an Azospirillum brasilence mutant with altered indole-3-acetic acid production. Research Microbiology 144: 69-75.
Barneix, A.J., Saubidet, M.I., Fatta, N., and Kade, M., 2005. Effect of rhizobacteria on growth and grain protein in wheat. Agronomy for Sustainable Development 25: 505–511.
Çakmakç R., Turan, M., Güllüce, M., and Şahin, F., 2014. Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on Aridisols in Turkey. International Journal of Plant Production 8(2): 163-181.
Çakmakçı, R., Erat, M., Erdoğan, Ü., and Dönmez, F., 2007. The influence of plant growth promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science 170: 288-295.
Cassan, F., Vanderleyden, J., and Spaepen, S., 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation 33(2): 440-459.
Chakraborty, U., Chakraborty, B.N., Chakraborty, A.P., and Dey, P.L., 2013. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology 29(5): 789-803.
Donmez, E., Sears, R.G., Shroyer, J.P., and Paulsen, G.M., 2001. Genetic gain in yield attributes of winter wheat in the Great Plains. Crop Science 41: 1412–1419.
Duffy, B.K., and Deeago, G., 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas biocontrol strain. Applied and Environmental Microbiology 65: 2429-2438.
Elliott, L.F., and Lynch, J.M., 1985. Plant growth-inhibitory pseudomonads colonizing winter wheat (Triticum aestivum L.) roots. Plant and Soil 64: 51-65.
Fallahi, H., Rezvani Moghaddam, P., Amiri, M., Aghhavani-Shajari, M., and Yazdani-Biuki, R., 2015. The study of nutritional management of mother plant and seed priming by biofertilizers on improve salinity tolerance of wheat (Triticum aestivum L.) cv. Sayonz at germination period. Journal of Agroecology 6(4): 689-700. (In Persian with English Summary)
Farina, A., Nakhjavan, S., Khodaei, F., and Shahverdi, M., 2014. Effect of plant density on physiological characteristics of growth and yield of varieties of dry farming wheat in Lorestan province. New Finding in Agriculture 8(4): 291-302. (In Persian with English Summary)
Feiziasl, V., and Pourmohammad, A., 2014. Effects of nitrogen rates and Application time on agronomic efficiency of nitrogen and seed yield of drylandʼs wheat genotypes. Iranian Journal of Water and Soil Science 24(3): 93104. (In Persian with English Summary)
Feiziasl, V., Fotovat, A., Astarae, A.R., Lakzian, A., and Mousavi, S.B., 2014. Effect of optimized nitrogen application in reducing drought stress effect on grain yield of some rainfed bread wheat genotypes. Iranian Journal of Seed and Plant Production 30(2): 169-198. (In Persian with English Summary)
Feiziasl, V., Jafarzadeh, J., Abdolrahmani, B., Mosavi, S.B., and Karimi, E., 2010 a. Studies on the effects of climatic factors on dryland wheat grain yield in Maragheh region. Iranian Journal of Field Crops Research 8(1): 121. (In Persian with English Summary)
Feiziasl, V., Jafarzadeh, J., Amri, A., Ansari, Y., Mousavi, S.B., and Ahmadpour Chenar, M., 2010 b. Analysis of yield stability of wheat genotypes using new Crop Properties Balance Index (CPBI) method. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1): 223-228.
Feiziasl, V., Jafarzadeh, J., Pala M., and Mosavi, S.B., 2009. Determination of micronutrient critical levels by plant response column order procedure for dryland wheat (T. aestivum. L.) in Northwest of Iran. International Journal of Soil Science 4(1): 14-19.
Feiziasl, V., Kasraei, R., Moghaddam, M., and Valizadeh, G.R., 2004. Investigation on uptake limitation and nutrient deficiency diagnosis at applied phosphorus and zinc fertilizers by different methods in Sardari wheat. Iranian Journal of Agricultural Sciences and Natural Resources 11: 23-33. (In Persian with English Summary)
Ghobadi, M., Kashani, A., Mamghani, S.A., and EghbalGhobadi, M., 2007. Studying tillering trend and its relationship with grain yield in wheat under different plant densities. Journal of Agricultural Sciences 3: 23-36.
Jarak, M., Mrkovački, N., Bjelić, D., Jošić, D., Hajnal-Jafari, T., and Stamenov, D., 2012. Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research 6(27): 5683-5690.
Jarak, M., Protio R., Jankovio, S., and Colo, J., 2006. Response of wheat to Azotobacter Actinomycet inoculation and nitrogen fertilizers. Romanian Agriculture Research Number 23.
Khalid, A., Arshad, M., and Zahir, Z.A., 2004. Screening plant growth promoting Rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology 96: 473–480.
Khosravi., H., 2013. Biofertilizers containing plant growth promoting rhizobacteria: Strengths and weaknesses. Journals Management system 1(1): 33-46.
Kumar, A., Maurya, B.R., and Raghuwanshi, R., 2014. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal. Agricultural Biotechnology 3: 121–128.
Kumar, S., Mittal, R.K., Gupta, D., and Katna, G., 2005. Correlation among some morpho-physiological characters associated with drought tolerance in wheat. Annals of Agri-bio Research 10: 129-134.
Lucy, M., Reed, E., and Glick, B.R., 2004. Application of free living plant growth- promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25.
Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, S.H., Sharma, A.K., Srivastava, R., Sahai, V., Aragno, M., Wiemken, A., Johri, B.N., and Fried, P.M., 2011. Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biology and Biochemistry 43: 609-619.
Majeed, A., Abbasi, M.K., Hameed, S., Imran, A., and Rahim, N., 2015. Isolation and characterization of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Original Research 6: 1-10.
Malakouti, M.J., and Gheybi, M.N., 1997. Determination of nutrient critical levels in strategic crops and correct fertilizer recommendation in Iran. Agricultural Education Publication, Iran Tehran, pp. 56. (In Persian)
Marschner, H., and Römheld, V., 1994. Strategies of plants for acquisition of iron. Plant and Soil 165(2): 261-274.
Ministry of Agriculture Jihad. 2015. Agricultural statistics, crop year 2013-2014. Volume one, crops (In Persian)
Mohammadi, R., Armion, M., Zadhassan, E., and Eskandari, M., 2014. Analysis of genotype × environment interaction for grain yield in rainfed durum wheat. Iranian Dryland Agronomy Journal 2(2): 114. (In Persian with English Summary)
Mohammadi, R., Armiyoun, M., Zade-Hassan, I., Ahmadi, M.M., and Sadeghzadeh, D., 2013. Genotype × environment interaction for grain yield of rainfed durum wheat using the GGE biplot model. Seed and Plant Improvement Journal 28-1(3): 504-518. (In Persian with English Summary)
Mohammadi, R., Sadeghzadeh, D., Armion, M., and Ahmadi, M.M., 2011. Analysis of stability and adaptability of grain yield in durum wheat genotypes. Agronomy Journal (Pajouhesh and Sazandegi) 91: 70-78. (In Persian with English Summary)
Nazarly, H., and Seyed Sharifi, R., 2013. Study of qualitative and quantitative yield and some agronomic characteristics of sunflower (Helianthus annus L.) in response of seed inoculation with PGPR in various levels of nitrogen fertilizer. Journal of Agroecology 5(3): 308-317. (In Persian with English Summary)
Niu, X., Song, L., Xiao, Y., and Ge, W., 2018. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8: 2580.
Reynolds, M., Skovmand, B., Trethowan, R., and Pfeiffer, W., 2004. Evaluating conceptual model for drought tolerance. CIMMYT, Mexico.
Rosas, B.S., Avanzini, G., Carlier, E., Pasluosta, C., Pastor, N., and Rovera, M., 2009. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biology and Biochemistry 41: 1802-1806.
Saber, Z., Pirdashti, H., and Esmaeili, M., 2012. Response of wheat growth parameters to co-inoculation of plant growth promoting rhizobacteria (PGPR) and different levels of inorganic nitrogen and phosphorus. World Applied Science Journal 16(2): 213-219.
Sahin, F., Çakmakçi, R., and Kantar, F., 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil 265: 123-129.
Saravanakumar, D., Kavino, M., Raguchander, T., Subbian, P., and Samiyappan, R., 2011. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiologiae Plantarum 33:203–209.
Seyedlar, S.M, Habibi, D., Sani, B., and Hasanpor, H., 2014. Improving wheat yield and quality through an integrated nutrient management system. International Journal of Biosciences 5(1): 273-281.
Shaharoona, B., Naveed, M., Arshad, M., and Zahir, Z.A., 2008. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied and Environmental Microbiology 79: 147–155.
Sharma, S.K., Johri, B.N., Ramesh, A., Joshi, O.P., and Prasad, S.V.S., 2011. Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in central India. Journal of Microbiology and Biotechnology 21: 1127–1142.
Slafer, A.G., and Satorre, E.H., 1999. An introduction to physiological- ecological analysis of wheat yield. Pp. 3-12 In: E.H. Satorre and G.A. Slafer (Eds.) Wheat ecology and physiology of yield determination. Food Product Press, New York. p. 3-12.
Talliee, A.A., and Bahramy, N., 2003. The effects of rainfall and temperature on the yield of dryland wheat in Kermanshah province. Journal of Water Research in Agriculture (Journal of Soil and Water Sciences) 17: 106-113. (In Persian with English Summary)
Tatari, M., Koocheki, A., and Nassiri Mahallati, M., 2009. Dryland wheat yield prediction using precipitation and edaphic data by applying of regression models. Iranian Journal of Field Crop Research 7(2): 357-365. (In Persian with English Summary)
Tavakoli, A.R., Liaghat, A., and Alizadeh, A., 2013. Influence of topography and latitude on rain water productivity and rainfed barley yield. Iranian Dryland Agronomy Journal 2(1): 85-99. (In Persian with English Summary)
Turan, M., Gulluce, M., Cakmakci, R., Oztas, T., and Sahin, F., 2010. The effect of PGPR strain on wheat yield and quality parameters. World Congress of Soil Science, Soil Solutions for a Changing World, pp. 140-143.
Vlassak, K., Holm, L.V., Duchateau, L., Vanderleyden, J., and De Mot, R., 1992. Isolation and characterization of fluorescent Pseudomonas associated with the roots of rice and banana growth in Sri Lanka. Plant and Soil 145: 51-63.
White, E.M., and Wilson, F.E.A., 2006. Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Irish Journal of Agricultural and Food Research 45: 85–101.
Yan, W., 2001. GGE biplot–A windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal 93: 1111–1118.
Yan, W., 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy Journal 94: 990–996.
Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z., 2000. Genotype evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40: 597–605.
Yousefpoor, Z., Yadavi, A., Balouchi, H., and Farajee, H., 2014. Evaluation of some physiological, morphological and phonological characteristics in sunflower (Helianthus annuus L.) influenced by biological and chemical sources of nitrogen and phosphorus. Journal of Agroecology 6(3): 508-519. (In Persian with English Summary)
Zhang, J.J., Chen, W., Dell, B., Vergauwen, R., Zhang, X.M., Mayer, J.E., and Van den Ende, W., 2015. Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling. Frontiers in Plant Science 6(624): 624.
CAPTCHA Image