##plugins.themes.bootstrap3.article.main##

مریم السادات حسینی غلامحسین حق نیا امیر لکزیان حجت امامی

چکیده

ریزجانداران خاک از عوامل مهم چرخه عناصر غذایی و جریان انرژی در خاک اند که تا اندازه زیادی نسبت به تغییر های محیط حساس می باشند. بنابراین از زیست توده میکروبی خاک می توان به عنوان شاخصی برای بررسی اثرات تنش ها بر خاک و ریزجانداران استفاده کرد. هدف از این مطالعه ارزیابی تأثیر مدیریت مقدار پسماند گیاه جو (Hordeum vulgare L.)، سوزاندن آن، کود نیتروژن و خاک ورزی بر کربن زیست توده میکروبی و وضعیت کربن آلی و نیتروژن کل در یک دوره 90 روزه بوده است. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی انجام گردید. تیمارهای آزمایش شامل دو سطح کاه و کلش جو (3 و 6 تن در هکتار)، دو سطح سوزاندن (نسوزاندن و سوزاندن)، دو سطح کود اوره (صفر و 125 کیلوگرم در هکتار) و دو سطح خاک ورزی (بدون خاک ورزی و با خاک ورزی) بودند. نتایج آزمایش نشان داد افزودن مقدار 6 تن در هکتار پسماند جو مقادیر کربن آلی، نیتروژن کل و کربن زیست توده میکروبی را نسبت به تیمار 3 تن در هکتار به طور معنی داری افزایش داد. در حالی که سوزاندن کاه و کلش به کاهش معنی دار همه پارامترها منجر گردید. انجام خاک ورزی نیز موجب کاهش معنی دار کربن آلی و کربن زیست توده میکروبی شد اما بر نیتروژن کل خاک بی تأثیر بود. کود نیتروژن بر کربن زیست توده میکروبی هیچ تأثیری نداشت، در حالی که کاربرد اوره بر کربن آلی و نیتروژن کل خاک تأثیر مثبت و افزایشی داشت. این مطالعه نشان داد که شیوه بدون خاک ورزی و همراه با حفظ پسماند گیاهی در سطح 6 تن در هکتار و روش بدون سوزاندن مؤثرترین نوع مدیریت در حفظ و افزایش مقادیر کربن آلی خاک، کربن زیست توده میکروبی و نیتروژن کل بودند.

جزئیات مقاله

مراجع
1- Acosta-Martnez, V., Zobeck, T.M., Gill, T.E., and Kennedy, A.C. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils 38: 216–227.
2- Ajwa, A.H., Dell, C.J., and Rice, C.W. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology and Biochemistry 31: 769-777.
3- Alvear, M., Rosas, A., Rouanet, J.L., and Borie, F. 2005. Effects of three soil tillage systems on some biological activities in an Ultisol from southern Chile. Soil and Tillage Research 82: 195–202.
4- Arocena, J.M., and Opio, C. 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113: 1–16.
5- Balota, E.L., Kanashiro, M., Filho, A.C., Andrade, D.S., and Dick, R.P. 2004. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Brazilian Journal of Microbiology 35: 300-306.
6- Boerner, R.E.J., Decker, K.L.M., and Sutherland, E.K. 2000. Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape-scale analysis. Soil Biology and Biochemistry 32: 899-908.
7- Bremner, J.M. 1970. Nitrogen total, regular kjeldahl method, In: Methods of Soil Analysis, Part2: Chemical and Microbiological Properties. 2nd ed. Agronomy 9(1). A.S.A. Inc., S.S.S.A. Inc., Madison publisher, Wisconsin., USA, pp. 610-616.
8- Cebel, N., Mullen, M., and Kircner, M. 2000. Comparison effect of conventional tillage and no tillage practices on some chemical, biochemical and microbiological properties of erosion plots soils. Canadian Journal of Soil Science 57: 397-408.
9- Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1–10.
10- Deng, S.P., and Tabatabai, M.A. 1997. Effect of tillage and residue management on enzyme activities in soils. III. Phosphatases and arylsulfatase. Biology and Fertility of Soils 24: 141–146.
11- Dinesh, R., Suryanarayana, M.A., Chaudhuri, S.G., and Sheeja, T.E. 2004. Long-term influence of leguminous cover crops on the biochemical properties of a sandy clay loam Fluventic Sulfaquent in a humid tropical region of India. Soil and Tillage Research 77: 69–77.
12- FAO. 1990. Management of gypsiferous soils. Soil bulletin. No. 62, Food and Agriculture Organization. Rome, Italy.
13- Friend, A.L. 1989. Differences in Nutrient Distribution Between Adjacent Cut and Uncut East-Slope Cascade Forest Stands Suggest Nutrient Losses. Forestry Sciences Laboratory, P.N.W. Research Station, Wenatchee, WA.
14- Gee, G.W., and Bauder, J.W. 1986. Particle size analysis, In: Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd ed. Agronomy 9(1). A.S.A., Inc., S.S.S.A. Inc., Madison Publisher, Wisconsin, USA.
15- Gil-Sotres, F., Trasar-Cepeda, C., Leiro´s, M.C., and Seoane, S. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry 37: 877–887.
16- Groffman, P.M., Rice, C.W., and Tiedje, J.M. 1993. Denitrification in a tallgrass prairie landscape. Ecology 74: 855-862.
17- Havlin, J.L., Kissel, D.E., Maddux, L.D., Claassen, M.M., and Long, J.H. 1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of America Journal 54: 448–452.
18- Hernandez, T., Garcia, C., and Reinhardt, I. 1997. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biology and Fertility of Soils 25: 109–116.
19- Hoyle, F.C., Murphy, D.V., and Fillery, I.R.P. 2006. Temperature changes and stubble management influence microbial CO2-C evaluation and gross N transformation rates. Soil Biology and Biochemistry 38: 71-80.
20- Hu, C., and Cao, Z. 2007. Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiments. World Journal of Agricultural Sciences 3(1): 63-70.
21- Jenkinson, D.S., and Powlson, D.S. 1976. The effects of biocide treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry 8: 209-213.
22- Kandeler, E., Palli, S., Stemmer, M., and Gerzabek, M.H. 1999. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry 31: 1253-1264.
23- Kaur, B., Gupta, S.R., and Singh, G. 2000. Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied Soil Ecology 15: 283–294.
24- Kennedy, A.C., Schillinger, W.F., and Stubbs, T.L., 2006. Soil Quality and Conservation Tillage in the Palouse and Dryland Farming Regions of the Pacific Northwest, In: A.S.A.E. Annual Meeting.
25- Landi, L., Renella, G., Moreno, J.L., Falchini, L., and Nannipieri. P. 2000. Influence of cadmium in the metabolic quotient, L-, D-glutamic acid respiration ratio and enzyme activity, microbial biomass ratio under laboratory conditions. Biology and Fertility of Soils 32: 8-16.
26- Liu, W., Xu, W., Han, Y., Wang, C., and Wan, S. 2007. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biology and Fertility of Soils 44: 259 –268.
27- Lovell, R.D., Jarvis, S.C., and Bardgett, R.D. 1995. Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology and Biochemistry 27: 969- 975.
28- Martinez, V.A., Zobeck, T.M., Gill, T.E., and Kennedy, A.C. 2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils 38: 216–227.
29- Mc Lean, E.D. 1982. Soil pH and lime requirement, In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. Agronomy 9(1). A.S.A. Inc., S.S.S.A. Inc., Madison Publisher, Wisconsin, USA. 199-209.
30- Ojima, D.S., Schimel, D.S., Parton, W.J., and Owensby, C.E. 1994. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24: 67-84.
31- Olsen, S.R., Cole, C.V., Watenabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorous in soil by extraction with sodium bicarbonate, U.S. Department of Agriculture Cris, 939. USA.
32- Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of Soil Analysis, Part2: Chemical and Microbiological properties. 2nd ed. A.A.C., Inc., Soil S.S.S.A., Inc., Madison Publisher, Wisconsin, USA.
33- Roldan, A., Salinas, G.J.R., Alguacil, M.M., Diaz, E., and Caravaca, F. 2005a. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Soil Ecology 30: 11–20.
34- Roldan, A., Salinas, G.J.R., Alguacil, M.M., Diaz, E., and Caravaca, F. 2005b. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma 129: 178– 185.
35- Ross, D.J., Speir, T.W., Tate, K.R., and Feltham, C.W. 1997. Burning in New Zealand snow-tussock grassland: effects on soil microbial biomass and nitrogen and phosphorous availability. New Zealand Journal of Ecology 21(1): 63-71.
36- Salinas, G.J.R., Velazquez, G.J.J., Gallardo, V.M., Diaz, M.P., Caballero, H.F., Tapia-Vargas, L.M., and Rosales-Robles, E. 2002. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil and Tillage Research 66: 143–152.
37- Sarathchandra, S.U., Ghani, A., Yeates, G.W., Burch, G., and Cox, N.R. 2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry 33: 953–964.
38- Singh, R.S., Srivastava, S.C., Raghubanshi, A.S., Singh, J.S., and Singh, S.P. 1991. Microbial C, N and P in dry tropical savanna: Effects of burning and grazing. Journal of Applied Ecology 28: 869-878.
39- Walkley, A., and Black, I.A. 1934. An examination of the Degtareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
40- Wright, A.L., Hons, F.M., and Matocha, J.E. 2005. Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Applied Soil Ecology 29: 85–92.
41- Yevdokimov, I., Gattinger, A., Buegger, F., Munch, J.C., and Schloter, M. 2008. Changes in microbial commu nity struct ure i n soil as a result of different amounts of nitrogen fertiliza tion. Biology and Fertility of Soils 44: 1103–1106.
42- Zhong, W.H., and Cao, Z.C. 2006. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology 36: 84–91.
ارجاع به مقاله
حسینی م. ا., حق نیا غ., لکزیان ا., & امامی ح. (2011). پیامدهای حاصل از مدیریت متفاوت پسماند گیاه جو (Hordeum vulgare L.) بر شاخص های کربن زیست توده میکروبی، کربن آلی و نیتروژن کل در خاک. بوم شناسی کشاورزی, 2(3), 372-382. https://doi.org/10.22067/jag.v2i3.7651
نوع مقاله
علمی - پژوهشی

مقالات بیشتر خوانده شده از همین نویسنده

1 2 3 4 > >>