تهیه نقشه‌های پراکنش سطح زیرکشت گیاهان باغی و زراعی در سطح کشوری برای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

2 گروه زراعت، دانشگاه ولیعصر رفسنجان، رفسنجان، ایران

3 گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

وجود پراکنش اراضی زیرکشت، می‏تواند اهمیت زیادی در مطالعات و تصمیمات کلان کشوری در زمینه‏های مختلف مانند برنامه­ریزی و توسعه کشاورزی، ارزیابی اثرات تغییر اقلیم، بررسی خلأ عملکرد و امنیت غذایی، مدیریت سیستم‏های تولید دام، خدمات اکوسیستم‏ها، مدیریت مصرف کود، تعیین الگوی کشت و سایر مطالعات در بخش‏های کشاورزی، جنگل‌داری و مرتع‌داری داشته باشد. یکی از کاربردهای مهم این نقشه­ها استفاده از آن­ها در ترکیب با نقشه­های پهنه­بندی اقلیمی و نقشه­های خاک برای انتخاب ایستگاه هواشناسی در مطالعات شبیه­سازی تولید گیاهی است. منبع اصلی این نقشه‏ها در سطح دنیا، پروژه SPAM مؤسسه IFPRI می‏باشد. نقشه‏های SPAM در مقیاس استانی برای کشور تهیه شده‏اند. بنابراین، در سطح استانی و بالاتر از دقت خوبی برخوردارند، ولی در مقیاس کوچک‌تر ممکن است همراه خطا باشند. پروژه SPAM فاقد نقشه پراکنش برای بسیاری از گیاهان است. در این مطالعه با استفاده از روش ساده شده SPAM به تولید نقشه‏های پراکنش 33 گیاه مهم زراعی و باغبانی کشور اقدام شد. نقشه­های حاصل در این مطالعه در مقایسه با نقشه­های اصلی SPAM دقت بالاتری داشتند. مزایای نقشه‏های تولید شده در این مطالعه نسبت به نقشه‏های SPAM به این شرح می‏باشند: (1) به‌روزتر بودن اطلاعات سطح زیرکشت مورد استفاده برای تولید نقشه‏ها (2) استفاده از داده سطح زیرکشت با مقیاس کوچک‌تر (در سطح شهرستان)، (3) توجه به کاربری کنونی اراضی مختص کشور در تولید نقشه‏های پراکنش در مطالعه حاضر (4) تولید نقشه پراکنش برای همه گیاهان مهم در کشور بر مبنای روش ارایه شده در مطالعه حاضر.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Distribution Maps of Horticultural and Agricultural Crops Land Generating at the Country Scale for Iran

نویسندگان [English]

  • Seyyed Majid Alimagham 1
  • Afshin Soltani 1
  • Amir Dadrasi 2
  • Alireza Nehbandani 3
1 Department of Agronomy , Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
2 Department of Agronomy, Vali-e-Asr University of Rafsanjan, Iran
3 Department of Agronomy, Faculty of Crop Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
چکیده [English]

Introduction
 There are only a limited number of maps available regarding the distribution of agricultural and horticultural lands in the country. The existence of these maps can play an important role in various fields such as agricultural planning and development, climate change assessment, yield gap, and food security analysis, livestock production systems management, ecosystem service, fertilizer use management, agricultural optimal cropping pattern determination and other studies related to agriculture, forestry, and rangeland. For example, one of the relevant applications of these maps is their use in combination with climate zoning maps and soil maps to select the target meteorological stations in plant production simulation studies with different practical purposes. The SPAM project (Spatial Production Allocation Model) in IFPRI (International Food Policy Institute) is the main source of these kinds of maps. The accuracy of SPAM maps is acceptable at providence or higher scales because they are prepared based on provincial data. However, these maps may not be precise on a smaller scale than the province. The SPAM data bank does not cover all main crops and none of the horticultural plants. Therefore, in this study, the land use maps of 33 main agricultural and horticultural plants were produced at the country scale using the simplified SPAM method. Materials and Methods: To generate these maps, a spatial overlay of land distribution (total rainfed land raster, total irrigated land raster, and total garden products raster for target crop) with polygon boundaries of cities was produced in ArcGIS. The value of the pixels in each county must be calculated in the created map. To do this, first, the number of pixels with land in each county was counted on this map. Then the area under cultivation of the target plant in each county was divided by the number of pixels counted in the same county. The number obtained in each county was considered as the pixel value of the land in that county for the target plant. The assumptions about the production of distribution maps for each plant in rainfed and irrigated Conditions are 1- To generate the distribution maps of each rainfed or irrigated annual plant; it is assumed that the distribution of the land of the given crop is the same as the distribution of all rainfed or irrigated lands within each county. It should be noted that this assumption can be incorrect if only the land distribution of the crop is considered in a particular crop year. Due to crop rotation, the distribution of a crop in the lands of a county changes every year. If the land distribution of a particular crop in a county is considered for a period of 3 years or more, the probability of target crop planting within each part of the county lands will be high. Because in the present study, information from the period 2014 to 2016 has been used, it is assumed that during this period, the distribution of lands the target rainfed and irrigated is similar to the distribution of total rainfed and irrigated lands in the given county. 2- In the case of horticultural crops that are perennial, it is assumed that the gardens of the target crop are distributed uniformly in the horticultural lands of that county. Therefore, the distribution of a particular horticultural crop in a county was similar to that of the total distribution of horticultural lands in that county.
Results and Discussion
The findings of this study suggest that SPAM2005 maps for various crops in Iran were less accurate than SPAM2010 maps at the province level. While the area of crops in SPAM maps was similar to statistical data at the province level, the spatial distribution of crops required modification. This issue became apparent when the grassland distribution map was compared with the crops SPAM maps, indicating that some crop land in SPAM maps was incorrectly located where grasslands should be. The approach used in this study resolved this problem and generated new spatial distribution maps for crops with higher accuracy.
Conclusion
This study utilized county-level data from over 400 counties to produce more accurate maps than the original SPAM maps. The advantages of the maps produced in this study compared to SPAM maps are (1) The use of up-to-date crop area information to generate the maps; (2) The use of crop area data at the county scale to increase map accuracy; (3) The application of country-specific land distribution maps to generate the maps; and (4) The production of distribution maps for all major horticultural and agricultural crops in the country, creating a comprehensive database in this field.

کلیدواژه‌ها [English]

  • Agronomy
  • Data bank
  • Horticulture
  • Land use map
  • SPAM map
Alimagham, S.M. (2018). Determination of desired plant traits for wheat and chickpea under current and future climates of Iran. Ph.D. Thesis, Gorgan University of Agricultural Sciences and Natural, Iran. (In Persian with English Summary)
Cai, Y., Guan, K., Lobell, D., Potgieter, A.B., Wang, S., Peng, J., Xu, T., Asseng, S., Zhang, Y., You, L., & Peng, B. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology,  274, 144-159. https://doi.org/10.1016/j.agrformet.2019.03.010
FAO. (1981). Report of the agro-ecological zones project. World Soil Resources Report 48(1-4). Rome: FAO.
Hertel, T. (2011). The global supply and demand for land in 2050: A perfect storm? American Journal of Agricultural Economics, 93(2), 259–275. https://doi.org/10.1093/ajae/aaq189
Joglekar, A.K., Wood-Sichra, U., & Pardey, P.G. (2019). Pixelating crop production: Consequences of methodological choices. PloS One, 14(2), 1-16. https://doi.org/10.1371/journal.pone.0212281
Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A., & Yang, H. (2010). A high-resolution assessment of global nitrogen flows in cropland. Proceedings of the National Academy of Sciences, 107, 8035–8040. http://doi.org/10.1073/pnas.0913658107
Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P., & Naylor, R.L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610. https://doi.org/10.1371/ 10.1126/science.1152339
Mobasheri, M.R., Rezaei, Y., & Valadan Zoej, M.J. (2007). A method in extracting vegetation quality parameters using hyperion images, with application to precision farming. World Applied Sciences Journal, 2(5), 476-483.
Nelson, E., Wood, S., Koo, J., & Polasky, S. (2011). Provisioning and regulatory ecosystem service values in agriculture. In: P. Kareiva, H. Tallis, T. Ricketts, G. Daily, and S. Polasky (Eds.). Natural Capital: Theory and Practice of Mapping Ecosystem Services. Oxford University Press, Oxford, pp. 150–167 (Chapter 9).
Nelson, G.C. (2002). Introduction to the special issue on spatial analysis for agricultural economists. Agricultural Economics, 27(3),197-200. https://doi.org/10.1111/j.1574-0862.2002.tb00116.x
Nelson, G.C., Rosegrant, M., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., Tokgoz, S., Zhu, T., Sulser, T., Ringler, C., Msangi, S., & You, L. (2010). Food Security, Farming, and Climate Change to 2050. IFPRI Research Monograph. International Food Policy Research Institute (IFPRI), Washington, USA. http://dx.doi.org/10.2499/9780896291867
Robinson, T.P., Thornton P.K., Franceschini, G., Kruska, R.L., Chiozza, F., Notenbaert, A., Cecchi, G., Herrero, M., Epprecht, M., Fritz, S., You, L., Conchedda, G., & See, L. (2011). Global livestock production systems. Rome, Food and Agriculture Organization of the United Nations (FAO) and International Livestock Research Institute (ILRI), 152.
Wood‐Sichra, U., Joglekar, A.B., & You, L. (2016). Spatial Production Allocation Model (SPAM) 2005: Technical Documentation. HarvestChoice Working Paper. Washington, D.C.: HarvestChoice, International Food Policy Research Institute (IFPRI).
You, L., & Wood, S. (2004). Assessing the spatial distribution of crop production using a cross-entropy method. Intl Food Policy Res Inst.
You, L., & Wood, S. (2006). An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90(1-3), 329-347. https://doi.org/10.1016/j.agsy.2006.01.008
You, L., Wood, S., Wood-Sichra, U., & Wu, W. (2014). Generating global crop distribution maps: From census to grid. Agricultural Systems. 127, 53-60. https://doi.org/10.1016/j.agsy.2014.01.002
Yu, Q., Wu, W., You, L., Zhu, T., Van Vliet, J., Verburg, P.H., Liu, Z., Li, Z., Yang, P., Zhou, Q., & Tang, H. (2017). Assessing the harvested area gap in China. Agricultural Systems, 153, 212-220. https://doi.org/10.1016/j.agsy.2017.02.003
Ziari, K. (2002). Urban land use planning (Case study: Minab). Geographical Research, 17, 63-78. (In Persian with English Summary)
CAPTCHA Image