شبیه‌سازی عملکرد پتانسیل چغندرقند (Beta vulgaris L.) و خلاء عملکرد ناشی از محدودیت آب و نیتروژن در استان خراسان رضوی با مدل SUCROS

نوع مقاله : علمی - پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

برنامه‌ریزی دقیق در تولید محصولات زراعی بر اساس تغییرات مکانی و زمانی عملکرد، مستلزم ارزیابی کمی عوامل محدود‌کننده رشد و آنالیز خلاء عملکرد در مناطق مختلف می‌باشد. بدین منظور جهت پیش‌بینی پتانسیل و خلاء عملکرد چغندرقند (Beta vulgaris L.) به عنوان مهمترین محصول بهاره در استان خراسان، از مدل آزمون شده و تغییر یافته سوکرز (سوکرزبیت) استفاده شد. مبدأ اصلی مدل سوکرزبیت، مدل سوکرز 2 بود که علاوه بر تغییرات اعمال شده در آن برای شبیه‌سازی چغندرقند، زیرمدل بیلان نیتروژن نیز به آن اضافه شد. افزون بر این، پایش عوامل زنده، غیرزنده و روش‌های مدیریتی مؤثر بر عملکرد با تکمیل نمودن پرسش نامه در مزارع شش شهرستان از استان خراسان صورت گرفت. نتایج شبیه‌سازی با مدل سوکرزبیت در شهرستان‌های مختلف استان خراسان رضوی نشان داد که چغندرقند در شهرستان سبزوار با 100 تن در هکتار کمترین و شهرستان نیشابور با 137 تن در هکتار بیشترین پتانسیل تولید را دارند. رابطه مثبت و معنی‌داری بین عملکرد پتانسیل و خلاء عملکرد کل مشاهده شد. با وجودی که به طور متوسط، برخی کشاورزان تا 20 مرتبه زمین را آبیاری می‌کنند، هنوز خلاء عملکرد ناشی از کمبود آب برای چغندرقند در این مناطق تا 42 تن در هکتار مشاهده می‌گردد. برای رسیدن به عملکرد پتانسیل، بسته به شرایط آب و هوایی بیش از 2000 میلی‌متر آب در شهرستان‌های سبزوار و تربت‌جام و 1400-1500 میلی‌متر آب در شهرستان‌های قوچان و نیشابور مورد نیاز است. برای پر کردن خلاء عملکرد ناشی از کمبود نیتروژن و رساندن آن به عملکرد پتانسیل به طور متوسط 440 کیلوگرم درهکتار در برخی شهرستان‌های از جمله سبزوار، نیتروژن برای جذب توسط گیاه چغندرقند نیاز است. این در حالی است میزان نیتروژن به کاربرده شده درمزارع کشاورزان به طور متوسط 50 درصد این مقدار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulating the potential yield and yield gaps of sugar beet due to water and nitrogen limitations in Khorasan province using SUCROS model

نویسنده [English]

  • M Nassiri Mahallati
Ferdowsi University of Mashhad
چکیده [English]

Introduction
Crop productivity is highly constrained by water and nitrogen limitations in many areas of the world (Kalra et al., 2007). Therefore, there is a need to investigate more on nitrogen and water management to achieve higher production as well as quality. Irrigated sugar beet in the cropping systems of Khorasan province in northeastern of Iran accounts for about 34% of the land area under sugar beet production (~115,000 ha) with an average yield of around 36 t.ha-1 (Anonymous, 2009). However, there is a huge yield gap (the difference between potential and water and nitrogen-limited yield) mainly due to biotic and abiotic factors causing major reduction in farmers’ yield. Accordingly, yield gap analysis should be carried out to reduce the yield reduction and reach the farmer’s yield to the potential yield. The current study aimed to simulate potential yield as well as yield gap related to water and nitrogen shortage in the major sugar beet-growing areas of Khorasan province of Iran.

Materials and methods
This study was carried out in 6 locations across Khorasan province, which is located in the northeast of Iran. Long term weather data for 1986 to 2009 were obtained from Iran Meteorological Organization for 6 selected locations. The weather data included daily sunshine hours (h), daily maximum and minimum temperatures (◦C), and daily rainfall (mm). Daily solar radiation was estimated using the Goudriaan (1993) method. The validated SUCROSBEET model (Deihimfard, 2011; Deihimfard et al., 2011) was then used to estimate potential, water and nitrogen-limited yield and yield gap of sugar beet for 6 selected locations across the Khorasan province in the northeast of Iran. This model simulates the impacts of weather, genotype and management factors on crop growth and development, soil water and nitrogen balance on a daily basis and finally it predicts crop yield. The model requires input data, including local weather and soil conditions, cultivar-specific parameters, and crop management information. Soil water module was used to determine soil water balance under water-limited conditions. Some questionnaires were then sent to extension agents to obtain information from the main sugar beet producing fields in each location.

Results and discussion
The SUCROSBEET model reasonably well predicted root yield across the study locations. The model could be used to simulate sugar beet yield under potential, water and nitrogen-limited situations. Simulation results of SUCROSBEET model showed that the lowest and highest sugar beet potential yield were obtained in Sabzevar (100 t.ha-1) and Neishaboor (137 t.ha-1), respectively. Total yield gap (the difference between potential and farmer’s yield) ranged from 74 to 109 t.ha-1, in Sabzevar and Neishaboor, respectively. Despite the fact that most of the farms had been irrigated up to 20 times over seasons, there were still yield gap of an average 42 t.ha-1 due to water shortage. To reach the potential yield in the study locations, more than 2000 mm water is required in Sabsevar and Torbat-Jam and 1400 to 1500 mm in Ghoochan and Neishaboor, respectively. On average, to fill nitrogen-limited yield gap, 440 to 530 kg.ha-1 of nitrogen for sugar beet uptake are also required. However, the farmers in various locations have been able to apply only 50% of the sugar beet nitrogen demands during the past decade. The results of the current study also suggested that the farmer yields of about 16-48 t.ha-1in the irrigated locations across Khorasan province, were not constrained by low genetic yield potential. It is also needed to irrigate more than two times in some locations for reaching water-limited yield to potential one. Although there is a high potential for production of sugar beet (more than 130 t.ha-1), the ratio of yield production to water consumption (known as water productivity) is not suitable in the study locations and production of sugar beet would not be cost-effective. Another issue which has not been considered in the simulations is qualitative traits of sugar beet (such as sugar content, Alkaloids, molasses sugar, sodium and potassium in storage organ, etc.) particularly under different levels of nitrogen applications. Although increasing nitrogen application would be resulted in higher yield and lower yield gaps, supplied nitrogen more than crop demand could be accumulated in storage organs and reduce white sugar yield. For instance, every 15 kg additional application of nitrogen reduced sugar content by 0.1 percent and reduced extraction coefficient of sugar. It is also worth noting that the current version of SUCROSBEET model is not capable to simulate qualitative traits of sugar beet and a few subroutines are needed to add to the model for future investigations.

Conclusion
The results indicated that although there is high yield potential for sugar beet in Khorasan province, water productivity would not be reasonable. In addition, yield gap in sugar beet cropping systems which reflects the actual yield gap in irrigated environments is essentially due to non-adoption of improved crop management practices and could be reduced if proper interventions are made.

کلیدواژه‌ها [English]

  • Limiting factors
  • Modeling
  • Nitrogen balance
  • Nitrogen shortage
1- Aggarwal, P.K., and Kalra, N. 1994. Simulating the effect of climatic factors, genotype, water and nitrogen availability on productivity of wheat: II. Climatically potential yields and optimal management strategies. Field Crops Research 38: 93-103.
2- Anonymous. 2009. Agriculture Statistics. Vol. 1. Filed Crops. Jihad-e-Agriculture Ministry. (In Persian)
3- Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper No. 56. 290 pp.
4- Alexandratos, N. 1995. World Agriculture: Towards 2010. FAO, Wiley, New York.
5- Angus, J.F., Stapper, M., and Donnelly, J.R. 1993. Simulation models for strategic and tactical management of crops and pastures. Journal of Agricultural Meteorology 48: 775-778.
6- Becker, M., and Johnson, D.E. 1999. Rice yield and productivity gaps in irrigated systems of the forest zone of Côte d'Ivoire. Field Crops Research 60(3): 201-208.
7- Bhatia, V.S., Singh, P., Wani, S.S., Chauhan, G.S., Rao, A.V.R, Mishra, A.K., and Srinivas, K. 2008. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural and Forest Meteorology 148: 1252-1265.
8- Deihimfard, R. 2011. Analysis of yield gaps of wheat and sugar beet in Khorasan province using simulation modeling. PhD dissertation. Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
9- Deihimfard, R., Nassiri Mahallati, M., and Koocheki, A. 2011. SUCROSBEET: A simple model for simulating growth and development of sugar beet under potential and nitrogen-limited conditions. Journal of Agroecology 1(2): 1-20. (In Persian with English Summary)
10- Deihimfard, R., Nassiri Mahallati, M., and Koocheki, A. 2012. Yield gap analysis in the main sugarbeet-growing environments of Iran using SOCROSBEET model. In: Proceedings 6th International Crop Science Congress. Brazilp. 3179.
11- Farshi, A., Shariati, A., Jarollahi, M.H., Ghaemi, R., Shahabifar, M.R., and Tavallaei, M. 1997. Estimation of Crop Water Requirements in Iran. Vol. I. Nashr Publication 900 pp. (In Persian)
12- Kalra, N., Chakraborty, D., Kumar, P.R., Jolly, M., and Sharma, P.K. 2007. An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers’ fields data. Agricultural Water Management 93: 54-64.
13- Manschadi, A.M., Soufizadeh, S., and Deihimfard, R. 2010. The role and importance of simulation modelling in improving crop production in Iran. The 11th Iranian Crop Science Congress 234-247. (In Persian)
14- Muchow, R.C., and Kropff, M.J. 1997. Assessing the potential yield of tropical crops: role of field experimentation and simulation. In: Kropff, M.J., Teng, P.S., Aggarwal, P. K., Bouma, J., Bouman, B.A.M., Jones, J.W., and Van Laar, H.H. (Eds.), Applications of Systems Approaches at the Field Level. Vol. II. Kluwer Academic Publishers, Dordrecht. The Netherlands p. 101-112.
15- Nassiri, M., and Koocheki, A. 2009. Agroecological zoning of wheat in Khorasan provinces: Estimating yield potential and yield gap. Iranian Journal of Field Crops Research 7(2): 695-709. (In Persian with English Summary)
16- Parsa, S. 2007. Modelling spatial and temporal variation of sugar beet (Beta vulgaris L.) in Khorasan province. PhD dissertation. Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
17- Pickering, N.B., Hansen, J.W., Jones, J.W., Wells, C.M., Chan, V.K., and Godwin, D.C. 1994. Weather Man A: Utility for Managing and Generating Daily Weather Data. Agronomy Journal 86: 332-337.
18- R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www. R-project. org.
19- Scott, R.K., and Jaggard, K.W. 2000. Impact of weather, agronomy and breeding on yields of sugar beet grown in the UK since 1970. The Journal of Agricultural Sciences 134: 341-352.
20- Shahabifar, M., and Rahimian, M.H. 2007. Measurement of sugar beet water requirements by lysimeter method in Mashhad. Sugarbeet 23(2): 177-184 (In Persian with English Summary)
21- Smit, A.B. 1996. PIEteR: A field specific bio-economic production model for decision support in sugar beet growing. PhD thesis. Wageningen Agricultural University. The Netherland.
22- Soltani, A., Gholipoor, M., and Haji-Zadeh, A. 2005. SBBET: A simple model for simulating sugar beet yield. Agricultural Sciences and Technology 19(2): 11-26 (In Persian with English Summary)
23- Spitters, C.J.T., Van Keulen, H., and Van Kraalingen, D.W.G. 1989. A simple and universal crop growth simulator: SUCROS87. In: Simulation and System Management in Crop Protection. Rabbinge, R., Ward, S.A., and Van Laar, H.H. (Eds.), 32nd ed. p. 147-181. Pudoc, Wageningen, the Netherlands.
24- Tatari, M. 2008. Dryland wheat yield prediction using climatic and edaphic data by applying neural networks. PhD dissertation. Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian with English Summary)
25- Vandendriessche, H.J. 2000. A model of growth and sugar accumulation of sugar beet for potential production conditions: SUBEMOpo. II. Model performance. Agricultural Systems 64: 21-35.
26- VanLaar, H.H., Goudriaan, J., and Van Keulen, H. 1997. SUCROS97: Simulation of crop growth for potential and water-limited production situations. C. de Wit Graduate School for Production Ecology and Resource Conservation, Wageningen. The Netherlands p. 52.
27- Wallach, D., Makowski, D., and Jones, J.W. 2006. Working with Dynamic Crop Models valuation, Analysis, Parameterization, and Applications. The Netherlands. The Boulevard, Langford Lane,Kidlington,Oxford OX5 1GB,UK.
28- WRR. 1995. Sustained risks: a lasting phenomenon. Netherlands Scientific Council for Government Policy. Reports to the Government. No. 44.
29- Yin, X., and Van Laar, H.H. 2005. Crop Systems Dynamics: An ecophysiological model of genotype-by-environment interactions (GECROS). Wageningen Academic Publishers, Wageningen 168 pp.
CAPTCHA Image