ارزیابی صفات کیفی شلغم علوفه‌ای (Brassica rapa var. rapa) در کشت مخلوط با ریحان (Ocimum basilicum) تحت تأثیر کاربرد بیوچار و ورمی‌کمپوست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت و اصلاح نباتات، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

2 گروه زراعت، دانشکده کشاورزی و منابع طبیعی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران

3 مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی جهاد دانشگاهی، کرج، ایران

چکیده

این پژوهش دو ساله بر روی عملکرد کیفی شلغم علوفه­ای (Brassica rapa var. rapa) به‌صورت اسپلیت پلات فاکتوریل در قالب طرح بلوک­های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه آزاد اسلامی کرج در سال­های (1398- 1397) انجام شد. با افزایش نسبت ریحان (Ocimum basilicum) در کشت مخلوط، رنگیزه­های فتوسنتزی، قندهای محلول، کاتالاز، رطوبت نسبی برگ شلغم علوفه­ای افزایش یافتند و همچنین موجب افزایش تنفس خاک و کاهش شاخص پایداری غشا گردید. مصرف بیوچار و همچنین ورمی­کمپوست در سطح 5/18 تن در هکتار موجب افزایش کیفیت برگ شلغم علوفه­ای، تنفس خاک و کاهش شاخص پایداری غشا شد. برهم‌کنش کشت مخلوط (70 درصد شلغم علوفه­ای+ 30 درصد ریحان) × ورمی­کمپوست 5/18 تن در هکتار × کاربرد بیوچار منجر به افزایش کلروفیل a 51/148 درصد، کلروفیل b 93/130 درصد، کلروفیل کل 48/134 درصد، کاروتنوئید 94/214 درصد، رطوبت نسبی برگ 31/50 درصد، قندهای محلول 26/89 درصد، کاتالاز 200 درصد، و کاهش شاخص پایداری غشا 16/192 درصد نسبت به شاهد (شلغم علوفه­ای 100 درصد (تک کشتی)× ورمی­کمپوست 15 تن در هکتار × عدم مصرف بیوچار) شد. بیشترین مقدار تنفس خاک نیز مربوط به برهم‌کنش ورمی­کمپوست 5/18تن در هکتار×کشت مخلوط 70 درصد شلغم علوفه­ای+ 30 درصد ریحان 54/154 درصد، کشت مخلوط 70 درصد شلغم علوفه­ای+ 30 درصد ریحان و بیوچار 90/190 درصد و همچنین برهم‌کنش بیوچار و ورمی­کمپوست 5/18تن در هکتار × بیوچار 75/93 درصد نسبت به شاهد بود. کاربرد توأم نسبت کاشت70 درصد شلغم علوفه­ای + 30 درصد ریحان در ورمی­کمپوست 5/18 تن در هکتار و بیوچار پنج تن در هکتار بهترین تیمار این پژوهش بوده و قابل توصیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Qualitative Traits of Forage Turnip (Brassica rapa var. rapa) in Intercropping with Basil (Ocimum basilicum) and Influence of Biochar and Vermicompost Application

نویسندگان [English]

  • Roma Kalhor Monfared 1
  • Mohammad reza Ardakani 2
  • Farzad Paknejad 1
  • Mansor Sarajuoghi 1
  • Hassanali Naghdibadi 3
1 Department of Agronomy and Plant Breeding, Karaj branch, Islamic Azad University, Karaj, Iran
2 Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
3 Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
چکیده [English]

Introduction
Intercropping reduces the application of chemical pesticides to control pests and weeds, reducing the environmental risks associated with chemical pesticide application (Himmelstein et al., 2017). Biochar is a soil amendment because of its potential to retain water and nutrients, prevent nitrogen leaching, increase soil fertility, and improve plant growth (Fang et al., 2018; Munoz et al., 2016). Other benefits of vermicompost are increased stability of soil resources, maintenance of production, reduction of environmental pollution, and increased soil biological activity too (Demir, 2019). Therefore, the purpose of this study was to investigate the quality of forage turnip (Brassica rapa var. rapa) leaves in different intercropping ratios of forage turnip and basil (Ocimum basilicum) using biochar as soil amendment and vermicompost.
 
Materials and Methods
A biennial study was conducted on the quality performance of forage turnip (Brassica rapa var. Rapa) in the form of split-plot factorial in a randomized complete block design with three replications in the research farm of Islamic Azad University of Karaj in two years (2018-2019). The treatments of this study include: intercropping in four ratio (100% forage turnip (monoculture), 90% forage turnip + 10% basil, 80% forage turnip + 20% basil, 70% forage turnip + 30% basil), in main plots, and vermicompost in two levels (15, 18.5 ton.ha-1) and biochar in two levels (No consumption and 5 ton.ha-1) which was placed in subplots. The forage turnip cultivar was PacFB05. In this study, Photosynthetic pigments were measured by the Arnon  (1967) method, membrane permeability (Ferrat and Loval, 1999), relative moisture content (Bertin et al., 1996), soluble leaf sugars (Sheligl, 1986), catalase (Dazy et al., 2008) and soil respiration (Isermeyer, 1952). Using SAS software (Ver.9) for data analysis of a two-year experiment and analysis of means was done with Duncan’s test in significance at 5% probability level. Excel software was used to plot the graphs.
 
Results and Discussion
The results of this study indicated that by increasing the ratio of basil in intercropping, the quality traits of forage turnip leaves increased. Consumption of biochar and application of vermicompost at the level of 18.5 ton.ha-1 increased the quality of forage turnip leaves. The highest chlorophyll a ((17.52 mg.g-1Fw), chlorophyll b (8.76 mg.g-1Fw) total chlorophyll (26.38 mg.g-1Fw), carotenoids (6.91 mg.g-1Fw), relative water content (59.54%), of soluble sugars (69.43%), catalase (0.018 micromole Fresh weight/min) were due to the interaction of (70% forage turnip + 30% basil) × vermicompost 18.5 ton ha-1 × application of biochar. The highest value of membrane stability index was related to 100% forage turnip × vermicompost 15 ton ha-1 (4.85 (mol.ml-1.s-1)). The highest amount of soil respiration is associated with the interaction of vermicompost 18.5 ton.ha-1 × 70% forage turnip + 30% basil with value of 0.28 (micromole.gsoil-1.hour-1)), interaction of biochar ×70% forage turnip + 30% basil (0.32 (micromole.gsoil-1.hour-1)), and interaction of vermicompost of 18.5 ton.ha-1 × biochar 0.31 (micromole. g soil-1.hour-1). Due to the potential of biochar (water and food retention and prevent of nitrogen leaching) it can increase the availability of water and nutrients for the plant, which leads to increased photosynthesis of the plant and thus the quality of forage turnip leaves (Akhtar et al., 2015; Hammer et al., 2015). Vermicompost increases soil organic matter and the uptake of zinc, copper, iron, phosphorus, potassium, and nitrogen in soil. The presence of these elements in the soil and their absorption by the roots increases vegetative growth and leaf production in the plant, which causes the level of light absorption, photosynthetic level, the formation of hydrocarbons in the leaves, and the resulting growth also increases leaf quality (Theunissen et al., 2010).
 
Conclusion
The results of this study indicated that the application of vermicompost ​​18.5 ton ha-1 and biochar increased forage turnip quality, which is due to the availability of water and nutrients for forage turnip. The best intercropping ratio was related to 70% forage turnip + 30% basil, which can be said to be due to the increase in the percentage of basil and the competition of plants for better use of intercropping components of growth sources such as light, water, and food.



 
 



 
 

کلیدواژه‌ها [English]

  • Catalase activity
  • Chlorophyll
  • Membrane stability index
  • Relative water content
  • Soluble sugars

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Ahmadnia, F., Ebadi, A., Hashemi, M., & Ghavidel, A. (2020). Investigating the short time effect of cover crops on physical and biological properties of soil. Journal of Water and Soil Conservation, 26(6), 277-290. (In Persian with English Summary) https://doi.org/10.22069/JWSC.2019.16172.3145
  2. Akhtar, S.S., Andersen, M.N., & Liu, F. (2015). Residual effects of biochar on improving growth physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68. https://doi.org/ 10.1016/j.agwat.2015.04.010
  3. Alizadeh, Y., Koocheki, A., & Nassiri Mahallati, M. (2010). Investigating of growth characteristic, yield, yield components and potential weed control in intercropping of bean (Phaseolus vulgaris ) and vegetative sweet basil (Ocimum basilicum L.). Journal of Agroecology, 2(3), 383-397. (In Persian with English Summary) https://doi.org/10.22067/JAG.V2I3.7652
  4. Arnon, A.N. (1967). Method of extraction of chlorophyll in the plants. Journal of Agronomy, 23, 112-121.
  5. Asadi, S., Rezaei-chiyaneh, E., & Amirnia. R. (2020). Evaluation of ecophysiological characteristics of row intercropped linseed (Linum usitatissimum) with chickpea (Cicer arietinum L.) affected as fertilizer sources under dry land conditions. Journal of Agroecology, 12(2), 241-264. (In Persian with English Summary) https://doi.org/10.22067/JAG.V12I2.75309
  6. Ayres, L. (2002). Forage brassicas: Quality crops for livestock production. Journal of New South Wales Agriculture, 2, 1-13.
  7. Badakhshan, S., Amiri-Nejad, M., Tohidi-Nejad, E., & Parsa Motlagh, B. (2021). Evaluation of yield and quality forage in intercropping tepary bean (Phaseolus acutifolus Gray) and millet cultivars. Journal of Agroecolog, 13(2), 291-305. (In Persian with English Summary) https://doi.org/10.22067/jag.v13i2.83847
  8. Bertin, P., Bouharmont, J., & Kinet, J.M. (1996). Soma clonal variation and improvement in chilling tolerance in rice. Journal of Plant Breeding, 115, 268-273.
  9. Carocho, M., Barros, L., Calhelha, R.C., Ciric, A., Sokovic, M., Santos-Buelga, C., Morales, P., & Ferreira Isabel, C.F.R. (2015). Potential of basil (Ocimum basilicum) as bioactive ingredient and natural preserver. 5th MoniQA International Conference, Porto, Portugal.
  10. Cong, W.F., Hoffland, E., Li, L., Six, J., Sun, J.H., Bao, X.G., Zhang, F., & Vander Werf, W. (2015). Intercropping enhances soil carbon and nitrogen. Journal of Global Change Biological, 21, 1715–1726.
  11. Dai, J., Qiu, W., Wang, N., Nakanishi, H., & Zuo, Y. (2018). Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition. Journal of Plant Physiological Biochemistry, 127, 516–524. https://doi.org/10.1016/j.plaphy.2018.04.024.
  12. Dazy, M., Jung, V., Ferard, J., & Masfaraud, J. (2008). Ecological recovery of vegetation on a coke-factory soil: Role of plant antioxidant enzymes and possible implication in site restoration. Journal of Chemosphere, 74, 57-63.
  13. Demir, Z. (2019). Effects of vermicompost on soil physicochemical properties and lettuce (Lactuca sativa Crispa) yield in greenhouse under different soil water regimes. Journal of Communications in Soil Science and Plant Analysis, 50(17), 2151-2168. https://doi.org/10.1080/00103624.2019.1654508
  14. Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonc¸alves, B., & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Journal of Acts Physiologic Plant, 35(4), 1281–1289.
  15. Dragicevic, V., Oljaca, S., Stojiljkovic, M., Simic, M., Dolijanovic, Z., & Kravic, N. (2015). Effect of the maize-soybean intercropping system on the potential bioavailability of magnesium, iron and zinc. Journal of Crop Pasture Science, 66, 1118–1127. https://doi.org/10.1071/CP14211
  16. Ehteshami, S.M.R., Ebrahimi, P., & Zand, B. (2011). Investigation of quantitative and qualitative characteristics of silage corn genotypes in Varamin region. Journal of Crop Production, 5(4), 19-38. (In Persian with English Summary)
  17. Fang, J., Zhan, L., Ok, Y.S., & Gao, B. (2018). Mini review of potential applications of hydro char derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21. https://doi.org/10.1016/j.jiec.2017.08.026
  18. Ferrat, I.L., & Loval, C.J. (1999). Relation between relative water content, nitrogen pools, and growth of vulgaris and P. acutifolius during water deficit. Journal of Crop Science, 39, 467-474.
  19. Hafez, E.M., Omara, A.E.D., Alhumaydhi, F.A., & El‐Esawi, M.A. (2021). Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Journal of Physiological Plantarum, 172, 587–602.. https://doi.org/10.1111/ppl.13261
  20. Hale, S.E., Nurrida, N.L., Jubaedah, Mulder, J., Sormo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S., & Cornelissen, G. (2020). The effect of biochar, lime and ash on maize yield in a long-term field trial in an Ultisol in the humid tropics. Journal of Science of the Total Environment, 719, 137455. https://doi.org/10.1016/j.scitotenv.2020.137455.
  21. Hammer, E.C., Forstreuter, M., Rillig, M.C., & Kohler, J. (2015). Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Journal of Applied Soil Ecology, 96, 114–121.
  22. Himmelstein, J., Ares, A., Gallagher, D., & Myers, J. (2017). A meta-analysis of intercropping in Africa: Impacts on crop yield, farmer income, and integrated pest management effects. International Journal of Agricultural Sustainability, 15, 1–10. https://doi.org/10.1080/14735903.2016.1242332
  23. Hussain, S.A., Panjagari, N.R., Singh, R.R.B., & Patil, G.R. (2015). Potential herbs and herbal nutraceuticals: Food applications and their interactions with food components. Journal of Critical Reviews in Food Science and Nutrition, 55, 94–122.
  24. Isermeyer, H. (1952). A simple method for determining soil formation and carbonates in soil. Journal of Plant Nutrition and Soil Science, 56, 26-38.
  25. Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., van Groenigen, J.W., Hungate, B.A., & Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Journal of Environmental Research Letter, 12, 053001.
  26. Jjagwe, J., Chelimo, K., Karungi, J., Komakech, A.J., & Lederer, J. (2020). Comparative performance of organic fertilizers in maize (Zea mays ) growth, yield, and economic results. Journal of Agronomy, 10(1), 69-92. https://doi.org/10.3390/agronomy10010069
  27. Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171, 29-37.
  28. Li, L., Tilman, D., Lambers, H., & Zhang, F.S. (2014). Plant diversity and over yielding: Insights from belowground facilitation of intercropping in agriculture. Journal of New Physiologist, 203, 63–69.
  29. Li, H., Ge, Y., Luo, Z., Zhou, Y., Zhang, X., Zhang, J., & Fu, Q. (2017). Evaluation of the chemical composition, antioxidant and anti-inflammatory activities of distillate and residue fractions of sweet basil essential oil. Journal of Food Science Technology, 54, 1882–1890.
  30. Libutti, A., Trotta, V., & Rita Rivelli, A. (2020). Biochar, vermicompost, and compost as soil organic amendments: Influence on growth parameters, nitrate and chlorophyll content of Swiss chard (Beta vulgaris var. cycla). Journal of Agronomy, 346(10), 1-18. https://doi.org/10.3390/agronomy10030346
  31. Lopes, T., Hatt, S., Xu, Q., Chen, J., Liu, Y., & Francis, F. (2016). Wheat (Triticum aestivum )-based intercropping systems for biological pest control. Journal of Pest Management Science, 72, 2193–2202.
  32. Mariotti, M., Masoni, A., Ercoli, L., & Arduini, I. (2009). Above- and below-ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Journal of Grass Forage Science, 64, 401–412.
  33. Munoz, C., Gongora, S., & Zagal, E. (2016). Use of biochar as a soil amendment: A brief review. Journal of Chilean Agricultural and Animal Sciences, 32, 37–47.
  34. Naser, J., Shaho, Z., Arshad, A., Jones, F.G., Liu, S., Li, C., Zubair Khan, M., Khan, T., Kalunguzya Banda, J.S., Zhou, X., & Gao, Q. (2020). The effect of maize-alfalfa intercropping on the physiological characteristics, Nitrogen uptake and yield of Maize. Journal of Plant Biology, 22(6), 1140-1149.
  35. Nohong, B., Rinduwati, M., & Yusuf, M. (2020). Influence of different vermicompost levels on growth, yield and quality of forage sorghum (Sorghum bicolor Moench). IOP Conference Series: Earth and Environmental Science. Digital meeting, p. 1-5. https://doi.org/10.1088/1755-1315/492/1/012029
  36. Ochiai, , Iwabuchi, K., Itoh, T., Watanabe, T., Osaki, M., & Taniguro, K. (2021). Effects of different feedstock type and carbonization temperature of biochar on oat growth and nitrogen uptake in Co application with compost. Journal of Soil Science and Plant Nutrition, 21(1), 276-285. http://hdl.handle.net/2115/84207
  37. Rajaie, M., Attarzadeh, M., Mosavi, S.H., & Attarzadeh, M. (2015). Using licorice compost (Glycyrizha glabra) to reduce the water stress effect in greenhouse cucumber. Journal of Agricultural Knowledge and Sustainable Production, 25(3), 79-90. (In Persian with English Summary)
  38. Ramnarain, V.I., Ori, L., & Ansari, A.A. (2018). Effect of the use of vermicompost on the plant growth parameters of pak choi (Brassica rapa chinensis) and on the soil structure in Suriname‏. Journal of Global Agriculture and Ecology, 8(1), 8-15.
  39. Roumani, A., Ehteshami, S.M.R., & Rabiei, M. (2015). Effect of seed inoculation with plant growth promoting rhizobacteria (PGPR) on forage quality and yield of turnip (Brassica rapa) at the different values of nitrogen and phosphorus fertilizers. Journal of Plant Production Technology, 14(2), 89-99. (In Persian with English Summary) https://doi.org/10.22067/GSC.V12I4.27654
  40. Sheligl, H.Q. (1986). Die verwertung orgngischer souren durch chlorella lincht. Journal of Planta, 47-51.
  41. Sheng, Y., & Zhu, L. (2018). Biochar alters microbial community and carbon sequestration potential across different soil pH. Journal of Science Total Environ, 622, 1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337.
  42. Shubha, K.Y., Prathibha, A.C., Nayana, B., & Suhasini, R. (2011). Environment friendly strategy to increase antioxidant content and produce of Sauropus androgynous. Journal of Life Science International Quarter, 6, 567-569.
  43. Smart, A., Jeranyama, P., & Owens. V. (2004). The use of turnips for extending the grazing season. South Dakota State University. Extension Extra, p. 66.
  44. Sullivan, P. (2003). Intercropping principles and production practices. Journal of Agronomy Systems Guide, 1, 1-12.
  45. Theunissen, J., Ndakidemi, P., & Laubscher, C. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences, 5(13), 1964-1973.
  46. Torabian, S., Farhangi-Abriz, S., & Rathjen, J. (2018). Biochar and lignite affect H+-ATPase and H+ -PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Journal of Plant Physiology and Biochemistry, 129, 141–149. https://doi.org/10.1016/j.plaphy.2018.05.030
  47. Weerarathne, L.V.Y., Marambe, B., & Chauhan, B.S. (2017). Does intercropping play a role in alleviating weeds in cassava as a non-chemical tool of weed management? – A review. Journal of Crop Protection, 95, 81–88.
  48. Wu, C., Huan, Y., Yang, L., Lin, L., Liao, M., Wang, J., Wang, Z., Liang, D., Xia, H., Tang, Y., Lv, X., & Wang, X. (2020). Effects of intercropping with two Solanum species on the growth and cadmium accumulation of Cyphomandra betacea International Journal of Phytoremediation, 42, 1-7. https://doi.org/10.1080/15226514.2020.1759505.
  49. Yin, D., Wang, X., Peng, B., Tang, C., & Ma, L. Q. (2017). Effect of biochar and Fe-biochar on Cd and as mobility and transfer in soil-rice system. Journal of Chemosphere, 186, 926-937. https://doi.org/10.1016/j.chemosphere.2017.07.126
  50. Zheng, H., Wang, X., Luo, X., Wang, Z., & Xing, B. (2018). Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Journal of Science Total Environ, 610, 951–960. https://doi.org/10.1016/j.scitotenv.2017.08.166.
CAPTCHA Image