اثر دور آبیاری و کشت مخلوط ذرت (Zea mays L.) و سورگوم (Sorghum bicolor L.) علوفه‌ای بر خصوصیات کمی و کیفی علوفه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 بخش تحقیقات چغندرقند، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران.

3 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران

چکیده

به منظور ارزیابی سودمندی کشت مخلوط ذرت و سورگوم علوفه­ای تحت رژیم­های مختلف آبیاری، آزمایشی به‌صورت کرت­های نواری در منطقه ریگان استان کرمان اجرا شد. تیمارهای آزمایش شامل دور آبیاری با سه سطح (100، 175 و 250 میلی‌متر تبخیر از تشتک تبخیر کلاس A) به‌عنوان کرت عمودی و نسبت‏های مختلف کشت مخلوط جایگزینی ذرت (Zea mays L.) و سورگوم (Sorghum bicolor L.) با پنج سطح (کشت خالص ذرت علوفه­ای (M)، کشت مخلوط 75 درصد ذرت علوفه­ای + 25 درصد سورگوم علوفه­ای (3M:1S)، کشت 50 درصد ذرت علوفه­ای + 50 درصد سورگوم علوفه­ای (2M:2S)، کشت 25 درصد ذرت علوفه­ای + 75 درصد سورگوم علوفه­ای (1M:3S) و کشت خالص سورگوم علوفه­ای (S)) به‌عنوان کرت افقی در نظر گرفته شد. نتایج نشان داد که با افزایش دور آبیاری از عملکرد علوفه کل، خاکستر کل و عملکرد پروتئین و فیبر خام کاسته شد. افزایش سهم سورگوم در مخلوط با کاهش میزان سهم برگ در زیست‌توده گیاه سورگوم، کربوهیدرات­های محلول در آب و قابلیت هضم علوفه همراه شد. بیشترین و کمترین عملکرد علوفه خشک با 35/14 و 64/11 تن در هکتار به‌ترتیب مربوط به دور آبیاری بعد از 100 و 250 میلی‌متر تبخیر بود. ارزیابی سودمندی کشت مخلوط براساس شاخص نسبت برابری زمین و افت واقعی عملکرد نشان داد که تیمار 75 درصد ذرت + 25 درصد سورگوم در شرایط تنش و نسبت کشت مخلوط 25 درصد ذرت + 75 درصد سورگوم در شرایط نرمال آبیاری در مقایسه با سایر نسبت­های کشت مخلوط از برتری بالاتری نسبت به کشت خالص گونه­ها برخوردار بود. نتایج آزمایش نشان داد که استفاده از کشت مخلوط گونه­ها به‌ویژه در شرایط محدودیت آبیاری می‌تواند راهکار مناسبی در جهت بهبود تولید علوفه در مقایسه با کشت خالص گونه­ها باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Irrigation Interval and Corn (Zea mays L.)-Sorghum (Sorghum bicolor L.) Intercropping on the Quantitative and Qualitative Characteristics of Fodder

نویسندگان [English]

  • Saeed Sadeghzadeh Hemayati 1
  • Hamed Mansouri 2
  • Mohsen Shahsavarpour 3
1 Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran.
2 Sugar Beet Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, AREEO, Hamedan, Iran.
3 Agronomy and Plant Breeding Department, Faculty of Agriculture, Jiroft University, Jiroft, Iran.n
چکیده [English]

Introduction
Iran is located in the arid and semi-arid region of the world and is considered one of the low rainfall regions of the world (Khatami et al., 2020). The agricultural sector is considered to be the major water consumer, therefore paying attention to the optimal use of water in this sector is of great importance and any saving in this sector is considered an effective contribution to saving water resources (Khajeh Khezri et al., 2018). Selection of suitable cultivation patterns and systems is one of the useful solutions in the optimal use of production resources, including water. In agricultural systems with limited resources, the use of intercropping is of particular importance. It has been reported that between 16 and 22 percent of the production of the agricultural sector in the world is supplied through various intercropping systems (Chamkhi et al., 2022). Many studies have been done regarding the intercropping of two C4 fodder plants in the investigation of their performance under mixed cultivation conditions. The value of LER in corn (Zea mays L.) – sorghum (Sorghum bicolor L.) intercropping under normal irrigation and moisture stress conditions was reported as 1.35 and 1.62 respectively, which indicated the superiority of corn and sorghum intercropping over the monoculture of both plants, especially under stress conditions. In all countries of the world - especially in Iran - research and progress in fodder production, management and exploitation of these plants have received less attention than other plants. This experiment was carried out with the aim of evaluating the quantitative and qualitative performance of two types of forage corn and sorghum in the intercropping system and the responses of these plants to different levels of drought stress.
Materials and Methods
The experiment was carried out as strip plots based on randomized complete block design with three replications in Hasharabad village, Regan city, Kerman province. In this experiment, the irrigation regimes with three levels were considered as a vertical plot and different proportions of corn and sorghum mixture with five levels as a horizontal plot. The vertical plot includes three levels of irrigation as 100 mm of evaporation from the class A evaporation pan (control), 175 mm of evaporation from the class A evaporation pan (mild stress) and 250 mm of evaporation from the class A evaporation pan (severe stress). The horizontal plot also has five levels of different proportions of fodder corn and sorghum, including monoculture of corn (M), intercropping of three quarters of corn + one quarter of sorghum (3M:1S), one half of corn + one half of sorghum (2M:2S), one quarter of corn + three quarters of sorghum (1M:3S) and monoculture sorghum (S). Quality characteristics included Dry Matter Digestibility (DMD), Water Soluble Carbohydrates (WSC), Crude Protein (CP), Acid Detergent Fiber (ADF), Total ASH and Crude Fiber (CF) were measured and analysis. In order to calculate the benefits of intercropping, the evaluation indicators of intercropping including Land Equivalent Ratio (LER), Actual Yield Loss (AYL) and Intercropping Advantage (IA) were used (Javanshir et al., 2000). Data were analyzed using SAS 9.1 software and the means were separated by the least significant difference test at 5% probability level.
Results and Discussion
The experimental results revealed that as the irrigation interval increased and drought stress intensified, there was a decrease in total fodder yield, total ash content, acid detergent fiber, dry matter digestibility, and the yield of protein and crude fiber in the fodder. Regarding the effect of intercropping on the qualitative characteristics of fodder, the findings indicated that an increase in the proportion of sorghum in the intercropping system led to a significant reduction in the share of leaves in the total sorghum biomass, water-soluble carbohydrates, acid detergent fiber, and fodder digestibility. The evaluation of the advantage of intercropping based on LER and AYL index showed that the intercropping of 75% corn with 25% sorghum in severe water shortage stress (irrigation after 250 mm evaporation) compared to other ratios intercropping had a higher superiority than the monoculture of the species.
Conclusion
In general, the results of this experiment showed that the use of intercropping, especially under conditions of limited irrigation, can be a suitable solution to improve fodder production compared to pure cultivation.

کلیدواژه‌ها [English]

  • Advantage of intercropping
  • Irrigation restriction
  • Quality of fodder
  • Replacement intercropping

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

  1. Ahmadvand, G., & Hajinia, S. (2019). Effect of intercropping on water use efficiency, yield quantity and quality of millet and soybean in different irrigation regimes. Iranian Journal of Field Crop Science, 49(4), 97-113. (In Persian with English abstract). http://doi.org/22059/ijfcs.2017.230808.654302
  2. Arzani, H. (2008). Forage Quality and Daily Requirement of Grazing Animal. University of Tehran Press, Tehran, Iran. p. 354.
  3. Arzani, H., Zohdi, M., Fish, E., Amiri, G.Z., Nikkhah, A., & Wester, D. (2004). Phenological effects on forage quality of five grass species. Journal of Range management, 57(6), 624-629. https://doi.org/10.2111/1551-5028(2004)057[0624:PEOFQO]2.0.CO;2
  4. Balasubramanian, V., & Sekayange, L. (1990). Area harvests equivalency ratio for measuring efficiency in multi season intercropping. Agronomy Journal, 82, 519-522. https://doi.org/10.2134/agronj1990.00021962008200030016x
  5. Beheshti, A., Kiani Feriz, M.R., Basaf, M., & Nabavi, G. (2019). The impact of maize and sorghum intercropping on water use efficiency and forage production. Research Achievements for Field and Horticulture Crops, 7(2), 187-196. https://doi.org/22092/rafhc.2019.122230.1145
  6. Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A., & Miron, J. (2006). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 131, 120–132. https://doi.org/10.1016/j.anifeedsci.2006.02.005
  7. Chamkhi, I., Cheto, S., Geistlinger, J., Zeroual, Y., Kouisni, L., Bargaz, A., & Ghoulam, C. (2022). Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 183, https://doi.org/10.1016/j.indcrop.2022.114958
  8. Cominelli, E., & Tonelli, C. (2010). Transgenic crops coping with water scarcity. New Environmental Management, 185, 21-30. https://doi.org/10.1016/j.nbt.2010.08.005
  9. Dahmardeh, M., & Hodiani, A. (2016). Assessment of soil elements in intercropping based on mathematical modeling. Computers and Electronics in Agriculture, 122, 218–224. https://doi.org/10.1016/j.compag.2016.01.036
  10. Francisco, E., Govea, C., Muck, E.R., Armstrong, L.K., & Albrecht, K. (2009). Ferment ability of corn–lablab bean mixtures from different planting densities. Animal Feed Science and Technology, 149, 298–306. https://doi.org/10.1016/j.anifeedsci.2008.05.009
  11. Hasanvand, M., Hoseini, M.B., & Jahansooz, M.R. (2019a). Effect of replacing ratios of maize: Sorghum intercropping on yield and yield components. Iranian Journal of Field Crop Science, 50(3), 109-120. (In Persian with English abstract). https://doi.org/10.22059/ijfcs.2018.248035.654421
  12. Hasanvand, M., Hoseini, M.B., & Jahansooz, M.R. (2019b). The effect of intercropping of maize: Sorghum on grain and forage yield. Iranian Journal of Field Crop Science, 50(2), 11-21. (In Persian with English abstract). https://doi.org/10.22059/ijfcs.2017.233771.654325
  13. Heydari, S. (2015). Evaluation of seed yield and yield components for intercropped foxtail millet (setaria Italica) and sorghum (Sorghum bicolor). M.Sc. Thesis, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran. p. 78. (In Persian with English abstract).
  14. Hopkins, W.G., & Huner, N.P.A. (2009). Introduction to plant physiology, Fourth Edition, John Wiley and Sons, New York, USA.
  15. Jafari, A., Connolly, V., Frolich, A., & Walsh, E.K. (2003). A note on estimation of quality in perennial ryegrass by near infrared spectroscopy. Irish Journal of Agricultural and Food Research, 42, 293-299.
  16. Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M.R., & Dashtaki, M. (2013). Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management, 117, 62-69. https://doi.org/10.1016/j.agwat.2012.11.001
  17. Javanshir, A., Dabbagh, A., & Hamidi, A. (2000). The ecology of intercropping. Jihad Daneshgahi of Mashhad Press, Mashhad, Iran. p. 222. (In Persian with English abstract).
  18. Khajeh Khezri, A., Rezaei Estakhroeih, A., & Golestani Kermani, S. (2018). Evaluating the effects of alternative and regulated deficit irrigation on yield and some components in intercropping (sorghum – red bean). Irrigation Sciences and Engineering, 41(2), 77-92. (In Persian with English abstract). https://doi.org/22055/jise.2018.13614
  19. Khatami, S.S., Bouzarjomehri, K., Zarrin, A., & Falsolayman, M. (2022). Analysis of water resources management studies in Iran and the world. Journal of Geography and Environmental Hazards, 11(2), 251-271. (In Persian with English abstract). https://doi.org/22067/geoeh.2022.73891.1136
  20. Kramer, P.J. (1983). Water relation of plants. Academic Press, New York.
  21. Lemaire, G., & Belanger, G. (2019). Allometries in plants as drivers of forage nutritive value: A review. Agriculture, 10(1), 5. https://doi.org/3390/agriculture10010005
  22. Lesoing, G.W., & Francis, C.A. (1999). Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agronomy Journal, 91(5), 807-813. https://doi.org/10.2134/agronj1999.915807x
  23. Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C.A. & Damalas, C.A. (2011). Dry matter yield, nitrogen content, and competition in pea cereal intercropping systems. European Journal of Agronomy, 34, 287-294. https://doi.org/10.1016/j.eja.2011.02.007
  24. Lithourgidis, A.S., Vasilakoglou, I.B., Dhima K.V., Dordas, C.A., & Yaikoulaki, M.D. (2006). Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research, 99, 106-113. https://doi.org/10.1016/j.fcr.2006.03.008
  25. Mansouri, L., Jamshidi, K., Rastgoo, M., Saba, J., & Mansouri, H. (2013). The Effect of additive maize-bean intercropping on yield, yield components and weeds control in zanjan climate conditions. Iranian Journal of Field Crops Research, 11(3), 483-492. (In Persian with English abstract). https://doi.org/22067/gsc.v11i3.29751
  26. Marsalis, M.A., Angadi, S.V., & Contreras-Govea, F.E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research, 116, 52–57. https://doi.org/10.1016/j.fcr.2009.11.009
  27. Marshner, H. (1995). Mineral Nutrient of Higher Plants. Academic Press, London.
  28. Mead, R., & Wiley, R.W. (1980). The concept of a "Land Equivalent Ratio" and advantage in yields from Experimental Agriculture, 16(3), 217-228. https://doi.org/10.1017/S0014479700010978
  29. Misra, A.N. (1994). Pearl millet, seedling establishment under variable soil moisture stress. Acta Physiologia Plantarum, 16(2), 101-103.
  30. Mosavi, G., Seghat-eslami, M.J., Javadi, H., & Ansariniya, A. (2008). Effect of irrigation interval and planting pattern on grain yield and its components in forage sorghum cv. Speed- Feed under Birjand conditions. 10th Iranian Crop Science Congress. 18 August. Karaj, Iran. (In Persian)
  31. Nabati, J., & Rezvani Moghaddam, P. (2010). Effect of irrigation intervals on the yield and morphological characteristics of forage millet, sorghum and corn. Iranian Journal of Field Crop Science, 41(1), 179-186. (In Persian with English abstract).
  32. Nakhzari Moghaddam, A. (2016). Effect of nitrogen and different intercropping arrangements of barley (Hordeum vulgare) and pea (Pisum sativum L.) on forage yield and competitive indices. Journal of Agroecology, 8(1), 47-58. (In Persian with English abstract). https://doi.org/10.22067/jag.v8i1.12534
  33. Ogindo, H.O., & Walker, S. (2005). Comparison of measured changes in seasonal soil water content by rained maize- bean intercrop and component cropping in semi-arid region in South Africa. Physics and Chemistry of the Earth, 30, 799-808. https://doi.org/1016/j.pce.2005.08.023
  34. Oliver, A.l., Grant, R.J., Pedersen, J.F., & Rear, J.O. (2004). Comparison of brown mbidrib-6 and -18 forage sorghum with conventional sorghum and corn silage. Journal of Dairy Science, 87, 637-644. https://doi.org/10.3168/jds.S0022-0302(04)73206-3
  35. Oweis, T., & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management, 80(1-3), 57-73. https://doi.org/10.1016/j.agwat.2005.07.004
  36. Rahbari, A., Masood Sinaki, J., & Zarei, M. (2015). Effects of phosphate fertilizer and less irrigation on grain yield of the forage millet. Journal of Agronomy Science, 5(10), 27-38.
  37. Rahmanian Sharifabad, N., Salehifar. E., & Foroghi, A. (2023). Effect of harvest stage and ratio of forage sorghum to corn silage on its nutritional value and degradability. Iranian Journal of Animal Science Research, 14(4), 487-504. (In Persian with English abstract). https://doi.org/22067/ijasr.2022.70346.1024
  38. Sarto, M.V., Borges, W.L., Sarto, J.R., Rice, C.W., & Rosolem, C.A. (2020). Root and shoot interactions in a tropical integrated crop–livestock–forest system. Agricultural Systems, 181, 1–11. https://doi.org/10.1016/j.agsy.2020.102796
  39. Sarto, M.V., Borges, W.L., Bassegio, D., Rice, C., & Rosolem, C. A. (2021). Maize and sorghum root growth and yield when intercropped with forage grasses. Agronomy Journal, 113(6), 4900-4915. https://doi.org/10.1002/agj2.20920
  40. Sayyadi Azar, Z., Javanmard, A., Shekari, F., Abbasi, A., & Amani Machiani, M. (2019). Amount of production and nutritional value of cultivated forage sorghum (Sorghum bicolor) with integrated application of bio and chemical fertilizers under different irrigation regimes. Journal of Agroecology, 11(3), 1021-1035. (In Persian with English abstract). https://doi.org/10.22067/jag.v11i3.71013
  41. Shaygan, M., Mazaheri, D., Rahimian Mashhadi, H., & Peyghambari, S.A. (2008). Effect of planting date and intercropping of maize (Zea mays) and foxtail millet (Setaria italica L.) on their grain yield and weeds control. Iranian Journal of Crop Science, 10(1), 31-46. (In Persian with English abstract). http://dorl.net/dor/20.1001.1.15625540.1387.10.1.3.6
  42. Shrestha, R., Turner, N.C., Siddique, K.H.M., Turner, D.W., & Speijers, J. (2006). A water deficit during pod development in lentils reduces flower and pod number but not pod size. Australian Journal of Agricultural Research, 57(4), 427-438. https://doi.org/10.1071/AR05225
  43. Yilmaz, Ş., Özel, A., Atak, M., & Erayman, M. (2015). Effects of seeding rates on competition indices of barley and vetch intercropping systems in the eastern mediterranean. Turkish Journal of Agriculture and Forestry, 39(1), 135–143. https://doi.org/10.3906/tar-1406-155
  44. Zhang, Y., Chen, F., Li, L., Chen, Y., Liu, B.R., Zhou, Y.L., Yuan, L.X., Zhang, F.S., & Mi, G.H. (2012). The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems. Research Paoer, 55, 993-1001. https://doi.org/10.1007/s11427-012-4396-6
CAPTCHA Image