##plugins.themes.bootstrap3.article.main##

فاطمه برزگری حسین ملکی نژاد

چکیده

هدف از انجام این پژوهش بررسی تغییرات نیاز آبی و شاخص‎های پایداری مصرف آب در بخش کشاورزی دشت یزد- اردکان با در نظر گرفتن تغییر اقلیم می‌باشد. به‌منظور انجام این تحقیق، دو دوره زمانی در نظر گرفته شد. دوره اول شامل سال‌های 2005-1971 و دوره دوم شامل سال‌های 2070-2021 می‌باشد. برای پیش‌بینی تغییرات اقلیمی منطقه از داده‌های ایستگاه سینوپتیک یزد در دوره 2005-1971 استفاده شد. داده‌های انتخابی شامل مقادیر روزانه بارش، درجه حرارت حداکثر، درجه حرارت حداقل و ساعات آفتابی بودند که برای بررسی تغییر اقلیم، تحت سناریوی  RPC 4.5در مدل گردش عمومی جو CanESM2 و نرم‌افزار SDSM 4.2.9 مورد بررسی قرار گرفتند. تبخیر و تعرق و نیاز آبی گیاهان برای دو دوره زمانی منتخب، از طریق گزارش 56 فائو و نرم‌افزار CROPWAT برآورده شد. به‌منظور بررسی میزان آب مصرفی محصولات شاخص کشاورزی منطقه، پرسش‌نامه‌هایی در سطح منطقه تکمیل گردید. نتایج بررسی‌ها نشان داد، وضعیت مصرف آب در اراضی کشاورزی مطابق با نیاز آبی محصولات نمی‌باشد و به‎دلیل کمبود آب، کاهش عملکرد محصولات را داریم. از طرفی تا سال 2100 تغییرات دما و توزیع بارش در منطقه مورد مطالعه معنادار خواهد بود و روند افزایشی دما، منجر به افزایش تبخیر و تعرق و بالا رفتن نیاز آبی گیاهان تا 4 درصد می‌شود. شاخص‎های پایداری مصرف آب کشاورزی نیز، شامل شاخص نسبت تبخیر و تعرق به بارندگی (EPR) و شاخص کمبود حداکثر آب (MD) در دوره‎های اقلیمی فعلی و آتی مورد بررسی قرار گرفتند. نتایج نشان داد حداکثر افزایش شاخص‎های EPR و MD به‎ترتیب برابر با 24% و 13% می‎باشد. لذا اثرات کمبود آب و ناپایداری آب در بخش کشاورزی منطقه مطالعاتی تحت تاثیر تغییرات اقلیمی مشهود خواهد بود. بنابراین لزوم تجدید نظر در کشاورزی منطقه، جلوگیری از افزایش بی‌رویه سطح زیر کشت و بالا بردن راندمان آبی ضروری به‌نظر می‌رسد.

جزئیات مقاله

کلمات کلیدی

تبخیر و تعرق, سناریو RCP 4.5, مدل SDSM, نرم‌افزارCROPWAT

مراجع
Abassi, F., Habibi Nokhandan, M., Goli Mokhtari, L., and Malbousi, S. 2010. Climate Change Assessment over Iran in the Future Decades Using MAGICC-SCENGEN Model, Iranian Journal of Physical Geography Research Quarterly 42(72): 91-109. (In Persian with English Summary)
Arora, V.K., Scinocca, J.F., Boer, G.J., Christian, J.R., Denman, K.L., Flato, G.M., Kharin, V.V., Lee, W.G., and Merryfield, W.J. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters 38(5): 1-6.
Ashofteh, P. 2012. Climate Change Impact on the Crop Water Requirement Using HadCM3 Model in Aidoghmoush Irrigation Network. Iranian Journal of lrrigation and Drainage 3(6): 142-151. (In Persian with English Summary)
Ashofteh, P.S., and Massah, A.R. 2012. Investigation of AOGCM Model Uncertainty and Emission Scenarios of Greenhouse Gases Impact on the Basin Runoff under Climate Change, Case study Gharanghu Basin, East Azerbaijan, Journal of Iran-Water Resources Research 8(2): 36-47. (In Persian with English Summary)
Azizabadi Farahani, M., Bakhtiari, B., Ghaderi, K., and Rezapoor, M. 2017. The Survey of Climate Change Impact on Drought Severity- Duration- Frequency Curves Using Copulas. Iranian Journal of Soill and Water Research 47(4): 743-754. (In Persian).
Babaeian, I., Kwon, W.T., and Im, E.S. 2004. Application of weather generator technique for climate change assessment over Korea. Korea Meteorological Research Institute, Climate Research lab.
Babaeian, I., and NajafiNik, Z. 2006. Evaluation of Khorasan Razavi climate changes for 2010-2030 period. Climatology Institute. Climate Change Research Group.
Bates, B.C., Kundzewicz, Z.W., Wu, S., and Palutikof, J.P. 2008. Climate change and water. Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva.
Bormann, B. 2011. Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change 104(3–4): 729–753.
De la Casa, A.C., and Ovando, G.G. 2014. Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agricultural and Forest Meteorology 195-196: 1–11.
Dousti, M., Habibnezhad Roshan, M., Shahedi, K., and Mir Yaghoubzade, M.H. 2013. Study of climate indices of Tamar River basin Golestan Province in terms of climate change using by LARS-WG model. Iranian Journal of the Earth and Space Physics 39(4): 177-189. (In Persian with English Summary)
Eitzingera, J., Tastna, M.SD., Zalud, Z., and Dubrovsky, M. 2003. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61(3): 195-217.
Ghahreman, N., Babaeian, I., and Tabatabaei, M. 2016. Evaluation the post processed outputs of dynamic models in estimation potential evapotranspiration changes under RCP scenarios (Case Study: Mashhad plain). Earth and Space Physics 42(3): 687-696. (In Persian with English Summary)
Gil-Alana, L.A. 2012. Long memory, seasonality and time trends in the average monthly temperatures in Alaska. Theoretical and Applied Climatology 108: 385–396.
Goyal, R.K. 2004. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agricultural Water Management 69: 1–11.
Hertig, E., and Jacobeit, J. 2008. Downscaling future climate change: Temperature scenarios for the Mediterranean area. Global and Planetary Change 63(2): 127-131.
IPCC, 2014. International Panel on Climate Change (IPCC). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. AR5.
Irrigation, Food and Agriculture Organization, 1998. drainage paper 56. FAO, Roma.
Itenfisu, D., Elliott, R.L., Allen, R.G., and Walter, I.A. 2000. Comparison of reference evapotranspiration calculations across a range of climates. Proceedings of the 4th National Irrigation Symposium. ASAE, Phoenix, AZ.
Kainuma, M., Matsuoka, Y., Morita, T., Masui, T., and Takahashi, K. 2004. Analysis of global warming stabilization scenarios: The Asian- Pacific Integrated Model, Energy Economics 26(4): 709-719.
Khalil, A.A. 2013. Effect of climate change on evapotranspiration in Egypt, Journal of Researcher 5(1): 7-12.
Khazaei, M.R., Bagher Zahabiyoun, B., and Saghafian, B. 2011. Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model. International Journal of Climatology 32(13): 1997-2006.
Kousari, M.R., Asadi Zarch, M.A., Ahani, H., and Hakimelahi, H. 2013. A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Climatic Change 120: 277–298.
Liu, S., Sun, P., Wang, J., and Chen, L. 2000. Hydrological functions of forest vegetation in upper reaches of the Yangtze River. Journal of Natural Resources 16: 451-456.
Moy,W.S., Cohon, J.L., and Revelle, C.S. 1986. A programming model for analysis of reliability, resilience and vulnerability of a water supply reservoir. Water Resources Research 22: 489-498.
Nam, W.H., Hong, E.M., and Choi, J.Y. 2015. Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?, Agricultural Water Management 150: 129–138.
Pouliotte, J., Smit, B., and Westerhoff, L. 2009. Adaptation and development: Livelihoods and climate change in Subarnabad, Bangladesh, Climate and Development 1(1): 31-46.
Raziei, T., Daryabari, J., Bordi, I., Modarres, R., and Pereira, L.S. 2014. Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change 124: 239–253.
Remrova, M., and Cislerova, M. 2010. Analysis of climate change effects on evapotranspiration in the watershed Uhlířská in the Jizera Mountains, Soil and Water Research 5(1): 28–38.
Richard, S., and Lindzen, R. 1994. On the Scientific basis for global warming scenarios. Environmental Pollution 83
(1-2): 125-34.
Roshan, G.R., Khoshakhlagh, F., and Azizi, G. 2012. Assessment of Suitable General Atmosphere Circulation Models for Forecasting Temperature and Precipitation Amounts in Iran Under Condition of Global Warming, Geography and Development Iranian Journal 36: 19-27. (In Persian with English Summary)
Tabari, H., Marofi, S., Aeini, A., Talaee, P.H., and Mohammadi, K. 2014. Sensitivity of evapotranspiration to climatic change in different climates. Global and Planetary Change 115: 16–23.
Taei Semiromi, S., Moradi, H.R., and Khodagholi, M. 2014. Simulation and prediction some of climatic variables by multiple linear model SDSM and atmospheric general circulation models (case study: Neishabour). Journal of Human and Environment 12(28): 1-16. (In Persian)
Tanasijevic, L., Todorovic, M., Pereira, L.S., Pizzigalli, C., and Lionello, P. 2014. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management 144: 54–68.
Tong, L., Kang, S., and Zhang, L. 2007. Temporal and spatial variations of evapotranspiraion for spring wheat in the Shiyang river basin in northwest China. Agricultural Water Management 87(3): 241-250.
Wilby, R.L., Dawson, C.W., Murphy, C., Connor, P.O., and Hawkin, E. 2014. The Statistical Down Scaling Model −Decition Centric (SDSMDC): conceptual basis and applications. Climate Research 61(3): 251-268.
Xu, Z.X., Chen, Y.N., and Li, J.Y. 2004. Impact of climate changes on water resources in the Tarim river basin. Water Resource Management 18: 439-458.
Zareian, M.J., Eslamian, S.S., and Safavi, H.R. 2016. Investigating the effects of sustainability of climate change on the agriculture water consumption in the Zayandeh-Rud river basin. Science and Technology Agriculture and Natural Resources, Water and Soil Science 20(75): 113-128. (In Persian with English Summary)
Zhang, X., Chen, S., Sun, H., Shao, L., and Wang, Y. 2011. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agricultural Water Management 98: 1097–1104.
ارجاع به مقاله
برزگری ف., & ملکی نژاد ح. (2019). بررسی اثرات تغییر اقلیم بر نیاز آبی و پایداری مصرف آب در بخش کشاورزی دشت یزد- اردکان. بوم شناسی کشاورزی, 10(4), 1161-1176. https://doi.org/10.22067/jag.v10i4.62527
نوع مقاله
علمی - پژوهشی